
Mutable WadlerFest DOT
Marianna Rapoport

University of Waterloo

mrapoport@uwaterloo.ca

Ondřej Lhoták

University of Waterloo

olhotak@uwaterloo.ca

Abstract
�e Dependent Object Types (DOT) calculus aims to model the

essence of Scala, with a focus on abstract type members, path-

dependent types, and subtyping. Other Scala features could be

de�ned by translation to DOT.

Mutation is a fundamental feature of Scala currently missing

in DOT. Mutation in DOT is needed not only to model e�ectful

computation and mutation in Scala programs, but even to precisely

specify how Scala initializes immutable variables and �elds (vals).

We present an extension to DOT that adds typed mutable refer-

ence cells. We have proven the extension sound with a mechanized

proof in Coq. We present the key features of our extended calculus

and its soundness proof, and discuss the challenges that we encoun-

tered in our search for a sound design and the alternative solutions

that we considered.

ACM Reference format:
Marianna Rapoport and Ondřej Lhoták. 2017. Mutable WadlerFest DOT. In

Proceedings of FTFJP’17, Barcelona , Spain, June 18-23, 2017, 6 pages.

DOI: 10.1145/3103111.3104036

1 Introduction
Abstract type members, parametric polymorphism, and mix-in

composition are only a few features of Scala’s complex type system.

�e presence of path-dependent types has made it particularly

hard to understand the interaction between the numerous language

components and to come up with a precise formalization for Scala.

�e lack of a theoretical foundation for the language has in turn

led to unsound design choices (Amin 2016; Amin and Tate 2016;

Odersky 2016).

To model the interaction between Scala’s core features soundly,

researchers have worked for over ten years to devise formal cal-

culi (Amin et al. 2016, 2012, 2014; Cremet et al. 2006; Moors et al.

2008; Odersky et al. 2003; Rompf and Amin 2015, 2016a,b). We refer

to the calculus of Amin et al. (2016) as WadlerFest DOT because

several di�erent calculi have used the name DOT. WadlerFest DOT

models the key components of the Scala type system, such as type

members, path-dependent types, and subtyping. �e eventual in-

tent is to formalize other constituents of the full language, such as

classes and inheritance, by translation to the core features of DOT.

However, WadlerFest DOT is still lacking some fundamental

Scala features, one of which is mutation. Without mutation, it is

di�cult to model (mutable) variables and �elds, or to reason about

side e�ects in general.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

FTFJP’17, Barcelona , Spain
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-5098-3/17/06. . .$15.00

DOI: 10.1145/3103111.3104036

Interestingly, mutation is even necessary to model a sound class

initialization order for immutable �elds, which are mutated once

when they are initialized. At the moment, Scala’s complex initial-

ization order can lead to programs with unintuitive behaviour of

�elds (Amin et al. 2016; Petrashko 2016); in particular, current ver-

sions of the Scala compiler permit programs in which immutable

�elds are read before they have been initialized. In order for the

Scala community to discuss alternative designs of the initialization

order, it needs a means to specify candidate designs precisely and

evaluate them formally. A sound formalization of initialization or-

der, in turn, requires reasoning about overwriting of class members

that �rst hold a null value from the time that they are allocated to

the time that they are initialized, which is not directly possible in

WadlerFest DOT.

�is paper presents the Mutable DOT calculus, which is an ex-

tension to WadlerFest DOT with typed mutable references. To that

end, we augment the calculus with a mutable heap and the pos-

sibility to create, update, and dereference mutable memory cells,

or locations. A Scala mutable variable (var) can then be modelled

by an immutable variable (already included in WadlerFest DOT),

containing a mutable memory cell. For example, a Scala object

object O { val x = 1; var y = 2 }

can be represented in mutable-DOT pseudocode as follows:
1

new {this: {x : Int } ∧ {y: Ref Int }} // structural type of object

{x = 1} ∧ {y = ref 2 Int } // definitions in object body

An unusual characteristic of our heap implementation is that it

maps locations to variables instead of values. �is design choice is

induced by WadlerFest DOT’s type system, which disallows sub-

typing between recursive types. We show how, as a result, storing

values on the heap would signi�cantly limit the expressiveness of

our calculus, and explain the correctness of storing variables on the

heap.

WadlerFest DOT is well suited as a basis for future extension,

both to specify existing higher-level Scala features by translation to

a core calculus, and to formally explore new proposed extensions

to Scala. It comes with a soundness proof formalized and veri�ed

in Coq. WadlerFest DOT is simpler than the other full DOT calculi,

and its semantics is small-step, so the soundness proof is based on

the familiar approach of progress and preservation (Wright and

Felleisen 1994).

�e contributions of this paper are:

– We de�ne an operational semantics and type system for

Mutable DOT, an extension of the small-step WadlerFest

DOT calculus with mutable references.

– We provide a mechanized type safety proof in Coq, in the

form of an extension of the original WadlerFest DOT proof,

which is suitable to be used for extensions of WadlerFest

DOT that require mutation.
2

1
�e Scala type system is nominal while WadlerFest DOT is (mostly) structural. �ere-

fore, the Scala example assigns the object a name, while WadlerFest DOT does not.

2
�e mechanized proof can be found in our fork of the WadlerFest DOT proof reposi-

tory (see h�ps://github.com/amaurremi/dot-calculus).

https://github.com/amaurremi/dot-calculus

FTFJP’17, June 18-23, 2017, Barcelona , Spain M. Rapoport and O. Lhoták

– We discuss the challenges that we encountered in adding

mutation to WadlerFest DOT and the design choices that

we made to overcome them.

�e rest of the paper is organized as follows. Section 2 presents

the Mutable DOT calculus. Section 3 outlines its type-safety proof.

We discuss Mutable DOT’s design in Section 4. Related work is

discussed in Section 5.

2 Mutation in WadlerFest DOT
In this section, we present Mutable DOT, our extension of the

WadlerFest DOT calculus with mutable references. An introduction

to DOT can be found in our technical report (Rapoport and Lhoták

2016) and in the WadlerFest DOT paper (Amin et al. 2016).

2.1 Abstract syntax
To support mutation, we augment the WadlerFest DOT syntax with

references that point to mutable memory cells, or locations. �e full

resulting abstract syntax is shown in the accompanying technical

report.

Locations are a new kind of value that is added to the syntax,

and are denoted as l . �e syntax comes with three new terms to

support the following reference operations:

– ref x T creates a new reference of type T in the store and

initializes it with the variable x .

– !x reads the contents of a reference x .

– x B y updates the contents of a referencex with the variable

y.

�e operations that create, read, and update references operate on

variables, not arbitrary terms, in order to preserve ANF. Newly-

created references become locations, or memory addresses, denoted

as l . Locations are stored in the store (we follow the terminology

of Pierce (2002)), denoted as σ , which serves as a heap.

�e store is a map from locations to variables. �is di�ers from

the common de�nition of a store, which maps locations to values.

We discuss the motivation for this design choice in Section 4.1. In

order to preserve the commonly expected intuitive behaviour of a

store, we must be sure that while a variable is in the store, it does

not go out of scope or change its value. We show this in Section 4.2.

Updating a store σ that contains a mapping l 7→ x with a new

mapping l 7→ y (denoted as σ [l → y]) overwrites x with y.

Locations are typed with the reference type RefT . �e under-

lying type T indicates that the location stores variables of type

T .

In the rest of this paper, for readability, we will occasionally write

program examples that relax the ANF requirements. For example,

we might write an application t u denoting let x = t in let y =
u in x y, or a reference ref t T to denote let x = t in ref x T .

2.2 Reduction rules
Amin et al. (2016). de�ne the DOT operational semantics in terms

of evaluation contexts. However, to make more explicit the evalu-

ation order of subterms in evaluation contexts, in the Coq proof,

Amin et al. de�ne an equivalent reduction semantics without eval-

uation contexts that uses a variable environment as syntactic sugar

for a series of let bindings whose expressions have already been

evaluated to values.

In the WadlerFest DOT paper, the variable environment is called

a store. We call it a stack, and reserve the term store for the mutable

heap. �us, as soon as a let-bound variable x evaluates to a value

v , the binding x 7→ v is moved onto the stack γ (using the rule

Let-Value).

Since the meaning of a Mutable DOT term depends on the store

contents, we represent a program state as a triple σ | γ | t , denoting

a term t that can point to memory contents in the store σ and that

has variable bindings in the stack γ .

�e new reduction rules are as follows:

– A newly created reference ref x T reduces to a fresh location

with an updated store that maps l to x :

l < dom(σ)

σ | γ | ref x T 7−→ σ [l 7→ x] | γ | l
(Ref)

– Dereferencing a variable using !x is possible if x is bound

to a location l by a let expression. If so, !x reduces to σ (l),
the variable stored at location l :

γ (x) = l σ (l) = y

σ | γ |!x 7−→ σ | γ | y
(Deref)

– Similarly, if x is bound to l by a let, then the assignment

operation x B y updates the store at location l with the

variable y:

γ (x) = l

σ | γ | x B y 7−→ σ [l 7→ y] | γ | y
(Store)

Programs wri�en in the Mutable DOT calculus generally do

not contain explicit location values in the original program text.

Locations are included as values in the Mutable DOT syntax only

because terms such as ref x T will evaluate to fresh locations during

reduction.

�e remaining rules are the WadlerFest DOT evaluation rules,

with the only change that they pass along a store. �e full stack-

based reduction relation (including our Mutable DOT extensions)

is shown in the technical report.

Although the stack and store appear similar, they have impor-

tant di�erences. A stack needs to support only the lookup and

append operations, since we never perform updates on the stack.

A stack also needs to have a notion of order since values can re-

fer to variables de�ned earlier in the stack. A store, on the other

hand, needs to support appending and overwriting locations with

di�erent variables. �e store does not need to be ordered because

variables cannot refer to locations. For those reasons, in the Coq

formalization of the soundness proof, the stack is represented as a

list, and the store as a map data structure.

�e stack is an optional element of the calculus, while the store

is necessary. A stack is just syntactic sugar for let-bindings: t and

γ | t ′ can be alternative, but equivalent ways of writing the same

term. However, there is no way to write a term σ | t as just a t .
Consequently, we can write σ | t and σ | γ | t ′ as equivalent

programs.

2.3 Type rules
�e Mutable DOT typing rules depend on a store typing Σ in addition

to a type environment Γ. A store typing maps locations to the types

of the variables that they store.

�e store typing spares us the need to re-typecheck locations

and allows to typecheck cyclic references (Pierce 2002).

Mutable WadlerFest DOT FTFJP’17, June 18-23, 2017, Barcelona , Spain

As an example, the following Mutable DOT program cannot be

easily typechecked without an explicit store typing (using only the

runtime store and the type environment):

p =
*....
,

let id = λ(x : >).x in
let r = ref id (> → >) in
let id′ = λ(x : >).(!r) x in
r B id′

+////
-

Starting with an empty store, a�er a few reduction steps we get

∅ | p 7−→∗
{
l → id′

}
| p′,

where

p′ =

*.....
,

let id = λ(x : >).x in

let r = l in
let id′ = λ(x : >).(!r) x in

id′

+/////
-

We would see by looking into the store that to typecheck the loca-

tion l , we needed to typecheck id′. id′ depends on r , which in turn

refers to the location l , creating a cyclic dependency.

We therefore augment our typing rules with a store typing, al-

lowing us to typecheck each location once and for all, at the time

of a reference creation. In the example, we would know that l is

mapped to (> → >) from the let-binding of r and remember this

typing in Σ. To express that a term t has type T under the type

environment Γ and store typing Σ, we write Γ,Σ ` t : T .

�e new rules related to mutable references are as follows:

– We typecheck locations by looking them up in the store

typing. If, according to Σ, a location l stores a variable of

type T , then l has type RefT :

Σ(l) = T

Γ,Σ ` l : RefT
(Loc)

– A newly created reference ref x T can be initialized with the

variable x if x has typeT . In particular, if x ’s precise typeU
is a subtype of T , then x has type T by Sub, so we can still

create a ref x T :

Γ,Σ ` x : T

Γ,Σ ` ref x T : RefT
(Ref-I)

– Conversely, dereferencing a variable of a reference type

RefT yields the type T :

Γ,Σ ` x : RefT

Γ,Σ ` !x : T
(Ref-E)

– Finally, if x is a reference of type RefT , we are allowed to

store a variabley into it ify has typeT . To avoid the need to

add a Unit type to the type system, we de�ne an assignment

x B y to reduce to y, so the type of the assignment is T :

Γ,Σ ` x : RefT Γ,Σ ` y : T

Γ,Σ ` x B y : T
(Asgn)

�e typing rules for Mutable DOT are shown in the technical re-

port. �e WadlerFest DOT rules are intact except that all typing

derivations carry a store typing.

2.4 Subtyping rules
�e subtyping rules of Mutable DOT include an added store typing,

and a subtyping rule for references. �e rules are shown in the

technical report.

Subtyping between reference types is invariant: usually, RefT <:

RefU if and only ifT = U . Invariance is required because reference

types need to be (i) covariant for reading, or dereferencing, and

(ii) contravariant for writing, or assignment.

However, in WadlerFest DOT, co- and contra-variance between

types does not imply type equality: the calculus contains examples

of types that are not equal, yet are equivalent with respect to sub-

typing. For example, for any typesT andU ,T ∧U <: U ∧T <: T ∧U .

Yet, T ∧U , U ∧T . �erefore, subtyping between reference types

requires both covariance and contravariance:

Γ,Σ ` T <: U Γ,Σ ` U <: T

Γ,Σ ` RefT <: RefU
(Ref-Sub)

3 Type Safety
In this section, we outline the soundness proof of Mutable DOT as

an extension of the WadlerFest DOT soundness proof (Amin et al.

2016). �e proof is based on the syntactic technique by Wright and

Felleisen (Wright and Felleisen 1994).

Our paper comes with a mechanized Coq proof, which is also

an extension of the WadlerFest DOT proof. �e Coq proof can be

found in our fork of the WadlerFest DOT proof repository:

h�ps://github.com/amaurremi/dot-calculus

3.1 Main ideas of the WadlerFest DOT soundness proof
We start by introducing the key ideas of the WadlerFest DOT proof.

We will later show how to adapt them to prove Mutable DOT type

safety.

Bad bounds One of the challenges of proving DOT sound is

the problem of “bad bounds” (Amin et al. 2012). For every pair

of arbitrary types T and U , there exists an environment Γ such

that Γ ` T <: U . Speci�cally, when type checking the function

λ(y : {A : T ..U }).t , the body t of the function is type checked in a

type environment Γ in which Γ(y) = {A : T ..U }. �en Γ ` T <: y.A
and Γ ` y.A <: U , so Γ ` T <: U (using (<:-Sel), (Sel-<:), and

(Trans)). In particular, if T and U are chosen as > and ⊥, respec-

tively, then we get Γ ` > <: ⊥. Since every type is a subtype of >

and a supertype of ⊥, this means that all types become equivalent

with respect to subtyping in this environment. �us, if arbitrary

type environments were possible, the type system would collapse,

all types would be subtypes of each other, and types would give us

no information about terms.

To avoid bad bounds, Amin et al. (2016) observe that such a

type environment cannot occur for an evaluation context during a

concrete execution of the program. Speci�cally, if t ′ is a subterm of

some term t , then the type checking rules for ∅ ` t : T require the

subterm t ′ to be type checked in some speci�c environment Γ (i.e.

Γ ` t ′ : T ′). If there is some variable y such that Γ ` y : {A : T ..U },
then y must be bound somewhere in t outside of t ′. If t ′ is in an

evaluation context of t (i.e. t = e[t ′]), then the syntactic de�nition

of an evaluation context ensures thaty can only be bound to a value
by a binding of the form let y = v in u. Since v is a value, it binds

A with some speci�c type S , so its type is {A : S ..S } by (Typ-I).

https://github.com/amaurremi/dot-calculus

FTFJP’17, June 18-23, 2017, Barcelona , Spain M. Rapoport and O. Lhoták

Precise typing In order to reason about “good” bounds, the paper

introduces the precise typing relation, denoted as `!. A precise

typing derivation is allowed to use only a subset of WadlerFest

DOT’s type rules, so as to eliminate the rules that can lead to non-

equal lower and upper type bounds.

�e typing derivation of a value is said to be precise if its root is

either ({}-I) (typing an object) or (All-E) (typing an abstraction).
3

Since the only other rule that could complete a value’s typing

derivation is subsumption (Sub), precise typing computes a value’s

most speci�c type.

Stack correspondence �e precise type of a value v cannot have

bad bounds because to every type member A that v de�nes, it

assigns a concrete type T , so the upper and lower bounds in the

precise type of v must both be T : Γ `! v : {A : T ..T }. A type

environment Γ is said to correspond to a stack γ (wri�en Γ ∼ γ) if it

assigns to every variable x the precise type of the corresponding

value γ (x). In such a type environment, variables cannot have type

members with bad bounds.

Possible types To prove the Canonical Forms Lemmas, the Wadler-

Fest DOT paper introduces the set of possible types Ts(Γ, x , v). In-

formally, this set is de�ned to contain the types that one would

expect x to have if it is bound to v , in the absence of bad bounds in

Γ. �e paper then proves that if Γ ∼ γ , then all of the types T such

that Γ ` x : T are actually included in Ts(Γ, x , γ (x)).

3.2 Adjusting De�nitions to Mutable DOT
To extend the WadlerFest DOT proof to a Mutable DOT proof, we

need to adjust the de�nitions from above.

Precise typing needs to be de�ned for location values.

De�nition 3.1 (Precise Value Typing). Γ, Σ `! v : T if Γ, Σ `

v : T and the typing derivation of t ends in ({}-I), (All-E), or (LOC) .

Since the typing relation depends on a store typing, the stack
correspondence relation needs to include Σ.

De�nition 3.2 (Stack Correspondence). A stack γ = xi 7→ vi cor-

responds to a type environment Γ = xi : Ti and store typing Σ ,

wri�en Γ, Σ ∼ γ , if for each i , Γ, Σ `! vi : T .

�e set of possible types needs to include a store typing and two

additional cases for references. First, if a value is a location storing

variables of type T , then the reference type RefT should be in the

set of possible types: if Σ(l) = T , thenT ∈ Ts(Γ, Σ, x , l). Second, we

need to account for reference subtyping. If the set of possible types

includes a reference type RefT , andU is both a sub- and supertype

ofT , then RefU is also in the set of possible types. �e full updated

de�nition of possible types is shown in the accompanying technical

report (Rapoport and Lhoták 2016).

3.3 Stores and well-typedness
It is standard in proofs of progress and preservation to require

that an environment be well-formed with respect to a typing:

∀x .Γ ` γ (x) : Γ(x). For stacks and stack typings, this condition

follows from the de�nition of Γ ∼ γ . We need to also de�ne well-

formedness for stores and store typings:

3
We omit the de�nition of precise typing for variables because our proof modi�cations

hardly a�ect it. Please refer to Amin et al. (2016) for the full de�nition.

De�nition 3.3 (Well-Typed Store). A store σ = {li 7→ xi } is well-
typed with respect to an environment Γ and store typing Σ =

li 7→ Ti , wri�en Γ, Σ ` σ , if for each i , Γ,Σ ` xi : Ti .

�e stronger corresponding stacks condition is not required for

stores. For stacks, it is needed to ensure absence of bad bounds,

because a type can depend on a stack variable (e.g. x .A depends

on x). No similar strengthening of well-typed stores is needed

because types cannot depend on store locations.

3.4 Proof
In this section, we present the central lemmas required to prove

the Mutable DOT soundness theorems.

�e Canonical Forms Lemma requires a well-typed store and a

statement that values corresponding to reference types must be

locations.

Lemma 3.4 (Canonical Forms). If Γ, Σ ∼ γ and Γ, Σ ` σ , then

1. If Γ, Σ ` x : ∀(x : T)U then γ (x) = λ(x : T ′).t for some T ′

and t such that Γ, Σ ` T <: T ′ and (Γ, x : T), Σ ` t : U .
2. If Γ, Σ ` x : {a : T } then γ (x) = ν (x : S)d for some S , d, t

such that Γ, Σ ` d : S , {a = t } ∈ d , Γ, Σ ` t : T .

3.
If Γ,Σ ` x : RefT then γ (x) = l and σ (l) = y for some l , y
such that Γ,Σ ` l : RefT and Γ,Σ ` y : T .

�e Substitution Lemma requires substitution inside of the store

typing, since the types in Σ can refer to the substituted variable.

Lemma 3.5 (Substitution). If (Γ, x : S), Σ ` t : T and Γ, [y/x] Σ `

y : [y/x] S then Γ, [y/x] Σ ` [y/x] t : [y/x]T .

�e following proposition is the main soundness result of the Mu-

table DOT proof. It is also an extension of the original proposition

of the WadlerFest DOT soundness proof.

Proposition 3.6. Let Γ,Σ ` t : T , Γ, Σ ∼ γ , and Γ, Σ ` σ . �en
either (i) t is a value, or (ii) there exist a stack γ ′, store σ ′ and a term
t ′ such that σ | γ | t 7−→ σ ′ | γ ′ | t ′ and for any such γ ′, σ ′, t ′

there exist environments Γ′ and Σ′ such that (Γ, Γ′), (Σ, Σ′) ` t ′ : T ,
(Γ, Γ′), (Σ, Σ′) ∼ γ , and (Γ, Γ′), (Σ, Σ′) ` σ .

Progress and preservation follow directly from Proposition 3.6.

4 Discussion
In this section, we explain the design choices of Mutable DOT in

more detail and discuss possible alternative implementations.

4.1 Motivation for a store of variables
One unusual aspect of the design of Mutable DOT is that the store

contains variables rather than values. We experimented with alter-

native designs that contained values, and observed the following

undesirable interactions with the existing design of WadlerFest

DOT.

A key desirable property is that the store should be well-typed

with respect to a store typing: ∀l . Γ,Σ ` σ (l) : Σ(l).
Many of the WadlerFest DOT type assignment rules apply only

to variables, and not to values. For example, the type {a : >} is not

inhabited by any value, but a variable can have this type. �is is

because an object value has a recursive type, and the (Rec-E) rule

Mutable WadlerFest DOT FTFJP’17, June 18-23, 2017, Barcelona , Spain

∅ | f 7→ λ(x : >).ref x T , y 7→ v | let r = f y in !r 7−→

∅ | f 7→ λ(x : >).ref x T , y 7→ v | let r = [y/x] ref x T in !r 7−→

∅ | f 7→ λ(x : >).ref x T , y 7→ v | let r = ref yT in !r 7−→

l 7→ y | f 7→ λ(x : >).ref x T , y 7→ v | let r = l in !r 7−→

l 7→ y | f 7→ λ(x : >).ref x T , y 7→ v, r 7→ l | !r 7−→

l 7→ y | f 7→ λ(x : >).ref x T , y 7→ v, r 7→ l | y

Figure 1. Reduction sequence for example program

that opens a recursive type µ (x : {a : >}) into {a : >} applies only

to variables, not to values. In particular, in the term

let x = ν (y : {a : >}){a = t } in ref x {a : >}

x has type {a : >} but ν (y : {a : >}){a = t } does not, even though

the let binding suggests that the variable and the value should be

equal. If memory cells were to contain values, a cell of type {a : >}

would not make sense, because no values have that type.

We could try to restrict reference types to always store recur-

sive (or function) types. However, this would severly restrict the

polymorphism of memory cells, because WadlerFest DOT does not

support subtyping between recursive types (subtyping between

recursive structural types is not supported by Scala either). In par-

ticular, it would be impossible to de�ne a memory cell containing

objects with a �eld a of type > and possibly additional �elds.

�e above example let term demonstrates another problem: type

preservation. �e type system should admit the term ref x {a : >}

because x has type {a : >}. �is term should reduce to a fresh loca-

tion l of type Ref {a : >}. But a store that maps l toν (y : {a : >}){a =
t } would not be well typed, because the value does not have type

{a : >}.

4.2 Correctness of a store of variables
Pu�ing variables instead of values in the store raises a concern:

when we write a variable into the store, we expect that when we

read it back, it will still be in scope, and it will still be bound to the

same value. For example, in the following program fragment, the

variable x gets saved in the store inside the function f .

let f = λ(x : >).ref x T in
let y = v in
let r = f y in
!r

Will x go out of scope by the time we read it from the store?

�e reduction sequence for this program is shown in Figure 1.

Notice that before the body ref x T of the function is reduced, the

parameter x is �rst substituted with the argument y, which does

not go out of scope.

More generally, from the stack-based reduction semantics, it is

immediately obvious that when a variable x is saved in the store

using ref x T ory B x , the only variables that are in scope are those

on the stack. �ere are no function parameters in scope that could

go out of scope when the function �nishes.

Moreover, once a variable is on the stack, it never goes out of

scope, and the value that it is bound to never changes. �is is be-

cause the only reduction rule that modi�es the stack is (Let-Value),

and it only adds a new variable binding, but does not a�ect any

existing bindings.

Another natural question is whether a store of variables limits

the expressiveness of the calculus. Since a program contains only

a �nite number of variables, one might think that the size of the

store is restricted by that number. However, during execution, the

reduction rule for function application performs capture-avoiding

substitution using alpha renaming, which introduces fresh variables

as necessary. �us, the use of variables in the store does not impose

any restrictions on the number of objects that can be created.

4.3 Creating references
�e Mutable DOT reference creation term ref x T requires both

a type T and an initial variable x . �e variable is needed so that

a reference cell is always initialized, to avoid the need to add a

null value to DOT. If desired, it is possible to model uninitialized

memory cells in Mutable DOT by explicitly creating a sentinel null

value.

Some other calculi with mutable references (e.g. Types and

Programming Languages (Pierce 2002)) do not require the typeT to

be given explicitly, but just adopt the precise type of x as the type

for the new cell. Such a design does not �t well with subtyping

in DOT. In particular, it would prevent the creation of a cell with

some general type T initialized with a variable x of a more speci�c

subtype of T .

More seriously, such a design (together with subtyping) would

break type preservation. Suppose that Γ,Σ ` y : S and Γ,Σ ` S <: T .

�en we could arrive at the following reduction sequence:

∅ | f 7→ λ(x : T).ref x , y 7→ v | f y 7−→

∅ | f 7→ λ(x : T).ref x , y 7→ v | [y/x] ref x 7−→

∅ | f 7→ λ(x : T).ref x , y 7→ v | ref y

�e term at the beginning of the reduction sequence has type RefT ,

while the term at the end, ref y, has type Ref S . Preservation would

require Ref S to be a subtype of RefT , but this is not the case in

general since the only condition that this example imposes on S
and T is that Γ,Σ ` S <: T .

5 Related Work
�e semantics of mutable references presented in this paper is

similar to Pierce’s extension of the simply-typed lambda calculus

with typed mutable references (Pierce 2002, Chapter 13). However,

the resemblance is mostly syntactic: the language presented in the

book does not include subtyping or other object-oriented features.

Mackay et al. (2012) developed a version of Featherweight Java

(Igarashi et al. 2001) with mutable and immutable objects and for-

malized it in Coq. However, neither of the analyzed type systems

involved path-dependent types.

FTFJP’17, June 18-23, 2017, Barcelona , Spain M. Rapoport and O. Lhoták

�e νObj calculus (Odersky et al. 2003) introduced types as mem-

bers of objects, and thus path-dependent types. However, type

members had only upper bounds, but not lower bounds, as they do

in Scala. On the other hand, the νObj calculus was richer than DOT,

including features such as �rst-class classes, which are not present

even in the full Scala language. Featherweight Scala (Cremet et al.

2006) was a simpler calculus intended to correspond more closely to

Scala, and with decidable type-checking. However, its type system

has not been proven sound. A related calculus, Scalina (Moors et al.

2008), intended to explore the design of higher-kinded types in

Scala, was also not proven sound.

Amin et al. (2012) �rst used the name DOT for a calculus intended

to be simple, and to capture only essential features, namely path-

dependent types, type re�nement, intersection, and union. �is

paper discussed the di�culties with proving such a calculus sound.

�e most notable challenges were counterexamples to type preser-

vation in a small-step semantics. In general, a term can reduce

to another term with a narrower type. In this DOT calculus, this

narrowing could disrupt existing subtyping relationships between

type members in that type.

Amin et al. (2014) examined simpler calculi with subsets of the

features of DOT to determine which features cause type preserva-

tion to fail. �ey identi�ed the problem of bad bounds, noted that

they cannot occur in runtime objects that are actually instantiated,

and conjectured that distinguishing types realizable at runtime

could lead to a successful soundness proof for a DOT calculus with

all of its features. Rompf and Amin (2015) con�rmed this conjecture

by providing the �rst soundness proof of a big-step semantics for a

DOT calculus with type re�nement and a type la�ice with union

and intersection. �e use of a big-step semantics makes it possible

to get around the problem of small steps temporarily violating type

preservation, at the cost of a more complex soundness proof.

Rompf and Amin (2016b) introduce a Coq-veri�ed version of

DOT extended with additional features. Most notably, it adds sup-

port for subtyping between recursive types. Allowing subtyping

between recursive types leads to a signi�cant increase in the proof’s

complexity, and it is why Lemmas 6 to 11 in the paper are required.

Because Scala has nominal rather than structural typing, subtyping

between recursive structural types is not needed to model it. It is

su�cient to support subtyping between abstract type members,

which is modelled by WadlerFest DOT.

Amin and Rompf (2017) presents mechanized soundness proofs

using de�nitional interpreters for big-step DOT-like calculi ranging

from System F to System D<:> , and compares System D<:> with

DOT. �e paper and an earlier technical report (Rompf and Amin

2016a) discuss how to add mutable references to this class of calculi

and come with a Coq formalization of System F<: with mutable

references.

WadlerFest DOT (Amin et al. 2016) de�nes a very speci�c evalu-

ation order for the subexpressions of a DOT calculus that satis�es

type preservation at each reduction step, and expresses it in a small-

step semantics. �e semantics uses administrative normal form

(ANF) to make the necessary evaluation order explicit and clear,

and to distinguish realizable types of objects instantiated at run

time from arbitrary types. In particular, in the context in which

a term is reduced, every ANF variable maps to a value, an actual

run-time object, rather than an arbitrary term; thus, the ANF vari-

ables play the role of labels of run-time values in the semantics

and its proof. �e paper is accompanied by a Coq formalization of

the full type soundness proof in the familiar style of progress and

preservation (Wright and Felleisen 1994), and is thus well suited

as a basis for extensions to the calculus. It is this WadlerFest DOT

calculus that we have extended with mutable references, to serve

as a basis for further extensions that involve mutation.

6 Conclusion
WadlerFest DOT formalizes the essence of Scala, but it lacks muta-

tion, which is an important feature of object-oriented languages.

In this paper, we show how WadlerFest DOT can be extended to

handle mutation in a type-safe way.

As shown in the paper, adding a mutable store to the semantics

of WadlerFest DOT is not straightforward. �e lack of subtyping

between recursive types leads to situations where variables and val-

ues, even though they are bound together, have incompatible types.

As a result, if WadlerFest DOT were extended with a conventional

store containing values, it would be impossible for a cell of a given

type T to store values of di�erent subtypes of T , thus signi�cantly

restricting the kinds of mutable code that could be expressed.

�e key idea of this paper is to enable support for mutation in

WadlerFest DOT by using a store that contains variables instead

of values. We have shown that by using a store of variables, it is

possible to extend WadlerFest DOT with mutable references in a

type-safe way. �is leads to a formalization of a language with

path-dependent types and mutation, and also brings WadlerFest

DOT one step closer to encoding the full Scala language.

References
Nada Amin. 2016. Soundness issue with path-dependent type on null path. h�ps:

//issues.scala-lang.org/browse/SI-9633. (2016).

Nada Amin, Samuel Grü�er, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016.

�e Essence of Dependent Object Types. In A List of Successes �at Can Change
the World - Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday.

249–272.

Nada Amin, Adriaan Moors, and Martin Odersky. 2012. Dependent Object Types. In

FOOL 2012.

Nada Amin and Tiark Rompf. 2017. Type soundness proofs with de�nitional inter-

preters. In POPL 2017. 666–679.

Nada Amin, Tiark Rompf, and Martin Odersky. 2014. Foundations of path-dependent

types. In OOPSLA 2014. 233–249.

Nada Amin and Ross Tate. 2016. Java and Scala’s type systems are unsound: the

existential crisis of null pointers. In OOPSLA 2016. 838–848.

Vincent Cremet, François Garillot, Sergueı̈ Lenglet, and Martin Odersky. 2006. A Core

Calculus for Scala Type Checking. In MFCS 2006. 1–23.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: a

minimal core calculus for Java and GJ. ACM Trans. Program. Lang. Syst. 23, 3 (2001),

396–450.

Julian Mackay, Hannes Mehnert, Alex Potanin, Lindsay Groves, and Nicholas Robert

Cameron. 2012. Encoding Featherweight Java with assignment and immutability

using the Coq proof assistant. In FTfJP 2012. 11–19.

Adriaan Moors, Frank Piessens, and Martin Odersky. 2008. Safe type-level abstraction

in Scala. In FOOL 2008.

Martin Odersky. 2016. Scaling DOT to Scala — Soundness. h�p://www.scala-lang.org/
blog/2016/02/17/scaling-dot-soundness.html. (2016).

Martin Odersky, Vincent Cremet, Christine Röckl, and Ma�hias Zenger. 2003. A

Nominal �eory of Objects with Dependent Types. In ECOOP 2003. 201–224.

Dimitry Petrashko. 2016. Making Sense of Initialization Order in Scala. h�ps://d-d.
me/talks/scalar2016/. (2016).

Benjamin C. Pierce. 2002. Types and Programming Languages.
Marianna Rapoport and Ondřej Lhoták. 2016. Mutable WadlerFest DOT. (2016).

h�p://arxiv.org/abs/1611.07610
Tiark Rompf and Nada Amin. 2015. From F to DOT: Type Soundness Proofs with

De�nitional Interpreters. (2015). h�p://arxiv.org/abs/1510.05216v1
Tiark Rompf and Nada Amin. 2016a. From F to DOT: Type Soundness Proofs with

De�nitional Interpreters. (2016). h�p://arxiv.org/abs/1510.05216v2
Tiark Rompf and Nada Amin. 2016b. Type soundness for dependent object types

(DOT). In OOPSLA 2016. 624–641.

Andrew K. Wright and Ma�hias Felleisen. 1994. A Syntactic Approach to Type

Soundness. Inf. Comput. 115, 1 (1994), 38–94.

https://issues.scala-lang.org/browse/SI-9633
https://issues.scala-lang.org/browse/SI-9633
http://www.scala-lang.org/blog/2016/02/17/scaling-dot-soundness.html
http://www.scala-lang.org/blog/2016/02/17/scaling-dot-soundness.html
https://d-d.me/talks/scalar2016/
https://d-d.me/talks/scalar2016/
http://arxiv.org/abs/1611.07610
http://arxiv.org/abs/1510.05216v1
http://arxiv.org/abs/1510.05216v2

	Abstract
	1 Introduction
	2 Mutation in WadlerFest DOT
	2.1 Abstract syntax
	2.2 Reduction rules
	2.3 Type rules
	2.4 Subtyping rules

	3 Type Safety
	3.1 Main ideas of the WadlerFest DOT soundness proof
	3.2 Adjusting Definitions to Mutable DOT
	3.3 Stores and well-typedness
	3.4 Proof

	4 Discussion
	4.1 Motivation for a store of variables
	4.2 Correctness of a store of variables
	4.3 Creating references

	5 Related Work
	6 Conclusion
	References

