
A PAT H T O D O T

marianna rapoport

Formalizing Scala with Dependent Object Types

PhD Thesis
Department of Computer Science

Faculty of Mathematics
University of Waterloo

September 2019 –

Marianna Rapoport: A Path to DOT, Formalizing Scala with Dependent
Object Types, © September 2019

D E C L A R AT I O N

This thesis consists of material all of which I authored or co-authored:
see Statement of Contributions included in the thesis. This is a true
copy of the thesis, including any required final revisions, as accepted
by my examiners.

I understand that my thesis may be made electronically available to
the public.

Waterloo, Canada, September 2019

Marianna Rapoport

S TAT E M E N T O F C O N T R I B U T I O N S

This thesis is a result of my collaboration with Ondřej Lhoták, Ifaz
Kabir, Paul He, Lu Wang, and Yaoyu Zhao. The work in the thesis
draws heavily on the material presented in the following publications:

Rapoport, Marianna, Ifaz Kabir, Paul He, and Ondřej Lhoták (2017).
“A simple soundness proof for dependent object types.” In: PACMPL
1.OOPSLA, 46:1–46:27.

Rapoport, Marianna and Ondřej Lhoták (2017). “Mutable WadlerFest
DOT.” In: FTfJP 2017, 7:1–7:6.

Rapoport, Marianna and Ondřej Lhoták (2019). “A Path To DOT:
Formalizing Fully Path-Dependent Types.” In: PACMPL 1.OOPSLA.

A B S T R A C T

The goal of my thesis is to enable formal reasoning about the Scala
programming language. To that end I present a core calculus that
formalizes Scala’s

– essential features in a

– type-safe way and is

– easy to extend with more features.

I build on the Dependent Object Types (DOT) calculus that formalizes
path-dependent types. My contributions are

– a generalization of DOT with types that depend on paths of arbi-
trary length,

– a simple, extensible type-safety proof for DOT, and

– an extension of DOT with mutable references.

The simple proof makes designing smaller extensions such as mutation
straightforward, and larger extensions, such as full support for paths,
approachable. Adding fully path-dependent types to DOT allows us
to model the key feature of Scala’s type and module system.

The calculi and proofs presented in this thesis are fully mechanized
in Coq.

vii

A C K N O W L E D G M E N T S

To appear.

ix

C O N T E N T S

Prologue
1 introduction 3

1.1 The Scala Programming Language 3

1.1.1 Modularity Through Abstraction 4

1.1.2 Modularity Through Composition 5

1.2 The DOT Calculus 7

1.3 Limitations of DOT 9

1.4 This Thesis 9

1.4.1 Part I: A Simple Soundness Proof for DOT 9

1.4.2 Part II: A DOT With Mutable References 10

1.4.3 Part III: A DOT With Fully Path-Dependent Types 11

1.4.4 Contributions 13

2 background : the dot calculus 15

2.1 DOT Abstract Syntax 15

2.2 DOT Operational Semantics 16

2.3 DOT Typing Rules 16

2.4 Example 18

I a simple soundness proof for dot

3 introduction 23

4 bad bounds 27

5 the simple dot proof 29

5.1 Overview 29

5.2 Inert Typing Contexts 30

5.3 Tight Typing 31

5.4 Inversion of Tight Typing 35

5.5 Canonical Forms Lemmas 38

5.6 Progress, Preservation, and Soundness 41

5.7 Proof Structure and Extensions 43

5.7.1 Proof Structure 43

6 modifications of the calculus 45

7 the struggle for “good” bounds 47

8 related work 49

8.1 DOT Soundness Proofs 49

8.2 History of Scala Calculi 50

8.3 Other Related Calculi 51

8.4 Type Checking Decidability 52

8.5 Syntactic vs. Semantic Proofs 53

9 summary 55

xi

xii contents

II case study : mutable dot

10 introduction 59

11 the mutable dot calculus 61

11.1 Mutable DOT Abstract Syntax 61

11.2 Mutable DOT Operational Semantics 62

11.3 Mutable DOT Typing Rules 63

11.4 Subtyping rules 65

12 type safety 67

13 discussion 71

13.1 Motivation for a heap of variables 71

13.2 Correctness of a heap of variables 72

13.3 Creating references 73

14 related work 75

15 summary 77

III fully path-dependent types

16 introduction 81

17 challenges of adding paths to dot 87

17.1 Path Limitations in DOT: A Minimal Example 87

17.2 Challenges of Adding Paths to DOT 88

17.2.1 Naive Path Extension Leads to Bad Bounds 89

18 main ideas 91

18.1 Paths Instead of Variables 91

18.2 Paths as Identifiers 92

18.2.1 Variables are Identifiers in DOT 92

18.2.2 Paths are Identifiers in pDOT 93

18.2.3 Well-Typed Paths Don’t Go Wrong 93

18.3 Path Replacement 94

18.4 Singleton Types 94

18.5 Distinguishing Fields and Methods 95

18.6 Precise Self Types 96

19 from dot to pdot 99

19.1 Syntax 99

19.2 pDOT Typing Rules 99

19.2.1 From Variables to Paths 99

19.2.2 Object Typing 101

19.2.3 Path Alias Typing 102

19.2.4 Abstracting Over Field Types 104

19.3 Reduction Semantics 105

20 examples 109

20.1 Class Encodings 109

20.2 Lists 111

20.3 Mutually Recursive Modules 112

20.4 Chaining methods with singleton types 113

21 type safety 115

21.1 Inert Types in pDOT 115

contents xiii

21.2 Proof Recipe for pDOT 117

21.2.1 Overview of Extended Proof Recipe 117

21.2.2 Typing Judgments for pDOT’s Proof Recipe 119

21.2.3 Proof Recipe Lemmas 121

21.3 Typed-paths Environments 129

21.4 Canonical Forms in pDOT 130

21.4.1 Canonical Forms Proof 131

21.5 Value Typing 143

21.6 Type Soundness for pDOT 145

22 related work 149

22.1 Early Class-based Scala Formalizations 149

22.2 DOT-like Calculi 150

22.2.1 Other Related Languages and Calculi 151

22.2.2 Decidability 152

23 conclusion 155

bibliography 157

L I S T O F F I G U R E S

Figure 2.1 Abstract syntax of DOT 15

Figure 2.2 DOT reduction rules 16

Figure 2.3 DOT typing and subtyping rules (Amin, Grüt-
ter, et al., 2016) 17

Figure 5.1 Tight Typing Rules (Amin, Grütter, et al., 2016) 32

Figure 5.2 Simplified Precise Typing Rules based on (Amin,
Grütter, et al., 2016) 33

Figure 5.3 Invertible typing rules 37

Figure 5.4 Dependencies between main lemmas in the
proof. Gray nodes denote existing lemmas. White
nodes denote lemmas that would need to be
added if DOT were extended with a new type
T and a new value v. 44

Figure 11.1 Abstract syntax of Mutable DOT (cf. DOT syn-
tax in Figure 2.1) 61

Figure 11.2 Mutable DOT operational semantics 62

Figure 11.3 Mutable DOT typing rules 64

Figure 11.4 Mutable DOT subtyping rules 66

Figure 12.1 An instance of the dependency graph from Fig-
ure 5.4 showing the main lemmas in the Mu-
table DOT proof as an extension of the simple
DOT proof (Part I). Gray nodes denote exist-
ing lemmas. White nodes denote Mutable DOT
specific lemmas 69

Figure 13.1 Reduction sequence for example program 72

Figure 16.1 A simplified excerpt from the Dotty compiler in
Scala. This code fragment cannot be expressed
in DOT, as shown on the right 82

Figure 19.1 Abstract syntax of pDOT (cf. DOT syntax in
Figure 2.1) 99

Figure 19.2 pDOT typing rules (cf. DOT typing in Fig-
ure 2.3) 100

Figure 19.3 pDOT subtyping rules (cf. DOT subtyping in
Figure 2.3) 101

Figure 19.4 Replacement of a path p in a type by q 104

Figure 19.5 Operational semantics of pDOT 106

Figure 19.6 Value-environment path lookup 106

Figure 20.1 A covariant list library in pDOT 111

Figure 20.2 Mutually recursive types in a compiler package:
fully-path-dependent types 112

Figure 20.3 Chaining method calls using singleton types 113

xiv

Figure 21.1 Precise typing in pDOT 119

Figure 21.2 Invertible-I typing in pDOT 122

Figure 21.3 Invertible-II typing in pDOT 123

Figure 21.4 Tight typing for pDOT 124

Figure 21.5 Typed-paths environments 129

Figure 21.6 The type lookup relation 144

Figure 21.7 An instance of the dependency graph from Fig-
ure 5.4 showing the main lemmas in the pDOT
proof as an extension of the simple DOT proof
(Part I). Gray nodes denote the pDOT lem-
mas that have similar analogues in the DOT
proof. White nodes denote pDOT specific lem-
mas. We omit the Precise-II and Precise-I re-
lated lemmas as well as additional lemmas
required to prove Corresponding Types and
the conversions between tight and invertible-II,
and between invertible-II and invertible-I typ-
ing. 148

L I S T O F TA B L E S

Table 1.1 Scala calculi that precede DOT 8

Table 21.1 Auxiliary typing relations that make up the
proof recipe of pDOT 118

xv

A C R O N Y M S

ANF Administrative Normal Form

DOT Dependent Object Types calculus by Amin, Grütter, et al.,
(2016)

xvi

P R O L O G U E

1

1
I N T R O D U C T I O N

Dependent Object Types (DOT) is intended to be a core calculus for
modelling Scala. Its distinguishing feature is path-dependent types that
refer to fields in objects that hold types rather than values. DOT was
designed to serve as an extensible core calculus that could guide
the design of future versions of Scala and help us understand the
interactions of path-dependent types with other features. The goal of
this thesis is to bridge the gap between DOT and Scala by making
DOT more expressive and easier to work with.

The first shortcoming of DOT that this thesis addresses is its intricate
soundness proof which makes seemingly simple extensions to the
calculus complex and unpredictable. I propose a simple, modular, and
extensible type-safety proof for DOT. I show how using the simple
proof, extensions to the calculus such as mutable references become
straightforward.

Second, this thesis presents pDOT, a generalization of DOT that
makes it more expressive. DOT is designed to formalize Scala’s module
system that is based on path-dependent types, but the calculus actually
lacks the ability to express a variety of valid Scala paths. As a result,
we might be overlooking soundness issues in Scala that are caused
by fully path-dependent types and can model only a restricted subset
of type dependencies that are possible in Scala. In this thesis, I use
the simple proof to generalize DOT to support path-dependent types
on paths of arbitrary length, as well as singleton types to track path
equality. I show that naive approaches to add paths to DOT make it
inherently unsound, and present the necessary conditions for such a
calculus to be sound. I discuss the key changes necessary to adapt the
techniques of the DOT soundness proofs so that they can be applied
to pDOT.

Path support in DOT allows us to express fully path- (as opposed to
variable-) dependent types. Encoding path-dependent types, in turn,
allows us to formalize the type dependencies that can occur in Scala,
to have a sound theoretical foundation for its type and module system,
and realize DOT’s full potential for formalizing Scala-like calculi.

1.1 the scala programming language

Scala is a complex programming language with a large number of
features that allows one to program in a variety of styles. Higher-order
functions, pattern matching, higher-kinded types, type inference, and
immutable collections, among other features, make it possible to pro-

3

4 introduction

gram in a purely functional, immutable style that is reminiscent of
Haskell’s. Support for classes, traits, and inheritance allow one to also
program in a traditionally object-oriented style, using class hierar-
chies and mutable state; and given Scala’s JVM-interoperability, one
can essentially write “Java programs” in Scala. Scala supports multi-
ple inheritance through mixin composition; it has both nominal and
structural typing. It has rich support for macros; implicit parameters,
implicit conversions, and implict return types; it has abstract type
members and path-dependent types.

Which of all these features are essential if we want to formally
reason about Scala? What features should be part of a core calculus
for the language? According to the Dependent Object Types calculus,
the central feature of Scala is path-dependent types. To understand why,
and to arrive at the language features that are necessary to formalize
Scala’s path-dependent types, let us look at the design goals of Scala.

One of the design goals of the Scala programming language is to
unify modules and objects, so that the same language constructs can
be used to define the overall structure of a program as well as its
implementation detail (Odersky and Zenger, 2005b). Scala achieves
modularity in several ways:

1. Being object-oriented allows Scala to benefit from inheritance and
aggregation. This allows one to easily extend programs with new
data entities without modifying or duplicating existing code, and
to easily reuse of large pieces of code.

2. Being functional allows Scala to use functions as the “glue” that
composes smaller parts of a program together (Hughes, 1989).
Scala functions can operate on algebraic data types (case classes);
deconstruct them through pattern matching; and use higher-
order functions to abstract over parts of a computation. By en-
abling easy, typesafe extensions of datatypes both with new
data variants and processors Scala provides a solution to the well-
known expression problem (Odersky and Zenger, 2005a).

3. Finally, Scala unifies modules and objects, so that the same lan-
guage constructs can be used to specify the overall structure of
a program as well as its implementation details. The unification
of the module and term languages is witnessed by the following
comparison with the ML module system:

object Ø module

class Ø functor

interface Ø signature

1.1.1 Modularity Through Abstraction

To be composable, modules need to support abstraction. Functional
programming abstracts over values and types using value and type

1.1 the scala programming language 5

parameters. Object-oriented programming abstracts over class com-
ponents by keeping them unimplemented. Scala provides abstraction
both through parametrization and aggregation.

In most object-oriented languages, the only kind of class components
that are allowed to be abstracted over by remaining unimplimented
are methods. In Scala, abstraction over object members is also allowed
for values and types.

Types that are members of classes and objects are called abstract abstract type
memberstype members (we will sometimes refer to them just as type members).

An abstract type member is a type that is declared inside a class1 but
whose definition can be left unspecified. We can refine the declaration
of abstract type members through type bounds. If the type member type bounds

A of an object p should be a subtype of T, we can declare A with
an upper bound: { type A <: T }. To make A a supertype of U, we
declare it with a lower bound: { type A >: U }. To refer to A, we use the
path-dependent type p.A — a type that depends on the object whose path path-dependent types

is p = x.a1. ¨ ¨ ¨ .an where x is the path’s receiver, and ai are its fields.

1.1.2 Modularity Through Composition

To compose modules, Scala uses mixin composition, a form of multiple
inheritance that uses a carefully designed linearization principle to
avoid dispatch ambiguity. To abstract away from the rules of class type intersection

linearization, we can focus on a simpler, commutative way of compos-
ing types called type intersection, which is not supported by Scala 2 “Union” might seem

like a better name
than “intersection”.
However, consider a
class Dog that
extends Animal. The
set of Dogs is a
subset of all Animals.
Therefore, to denote
the members that are
both in Dog and
Animal we would
use intersection.

(current Scala), but is already a feature of Dotty, the compiler for
Scala 3 (Documentation, 2018a). A type intersection T^U is a type
that has the members of both T and U.

Intersection allows us to express type refinement; for example, inter-
secting the types { type A <: T } and { type A >: U } yields { type A >:
U <: T }, a type declaration that has a lower and upper bound at the
same time. In fact, { type A <: T } and { type A >: U } are just syntactic
sugar for { type A >: Nothing <: T } and { type A >: U <: Any }, where
Any and Nothing are the top and bottom of Scala’s subtyping lattice.

The combination of abstract type members, path-dependent types,
and type intersection yields a surprisingly expressive type system.
These concepts alone can encode a variety of features that are common
in Scala and other programming languages:

– parametric polymorphism (generics):

– a parametrized class class List[T] can be encoded using type 1 More complicated
representations such
as higher-kinded
types require more
complex
encodings (Odersky,
Martres, and
Petrashko, 2016).

members as class List { type T }, whereas type application
List[Int] can be represented using refinement (type intersec-
tion): List^ { type T = Int }; 1

1 The following text applies to both classes and traits, which are similar to Java’s
interfaces but allow methods to have implementations.

6 introduction

– type parameters for polymorphic functions such as def id[T](x:
T) = x can be encoded using type members as follows: def
id(y: { type T })(x: y.T) = x

– co- and contravariance can be often encoded by translating declara-
tion-site variance into use-site variance; for example, a covariant
list

class List[+T] { def tail: List[T] }

can be expressed as

class List { type T; def tail: List ^ { type T <: this.T }

(note the path-dependent type this.T which references the in-
stance of T that belongs to tail’s enclosing List object) (Amin,
Grütter, et al., 2016);

– existential polymorphism: type members can encode a subset of
use cases for existential types, as shown by Norris, (2015);

– family polymorphism (Ernst, 2001): we can distinguish path-depen-
dent types that belong to different objects (“families”) at compile
time; for example, given two objects tree and dag of type Graph
and a method edge(g: Graph, n1: g.Node, n2: g.Node), a method call
edge(tree, treeNode, dagNode) that is invoked on nodes belonging
to different graphs will result in a type error;

– subtyping hierarchies between recursively defined classes: the general
problem is to preserve the recursion between two classes A2 and
B2 that inherit from two mutually recursive classes A and B re-
spectively; as shown by Bruce, Odersky, and Wadler, (1998), such
relationships require the use of additional types that are cum-
bersome and impractical to express using generics, leading to a
quadratic increase in the number of necessary type parameters;
however, it is easy to express this type of recursion/subtyping
relationships using type members.

Abstract type members are thus a powerful feature that can encode
a variety of useful programming concepts; but could they be too
powerful? For example, how safe is it to allow type members to be
declared with arbitrary lower and upper bounds? What if a type is
declared with incompatible bounds, such as { type A >: Any <: Nothing }
or { type A >: Int <: String } — should the type system try to detect such
“bad bounds” and ban “nonsensical” type declarations? Furthermore,
we reference an abstract type member through a path-dependent type
p.A, which depends on the runtime value of p. What happens if p
does not stop evaluating? Finally, will something break if we couple
type members with other features? Which feature combinations are
safe and which are not (Amin, Grütter, et al., 2016; Amin, Moors, and
Odersky, 2012; Amin, Rompf, and Odersky, 2014; Moors, Piessens,

1.2 the dot calculus 7

and Odersky, 2008; Odersky, Cremet, et al., 2003; Rompf and Amin,
2015, 2016a)?

To answer these questions we need to be able to formally reason
about Scala’s type system. That is where Dependent Object Types
come in.

1.2 the dot calculus

The Dependent Object Types (DOT) calculus is a sound formalization
of “the essence of Scala”: abstract type members with arbitrary type
bounds, path-dependent types, and type intersection. Rompf and
Amin, (2015) and Amin, Grütter, et al., (2016) presented the first DOT
soundness proofs based on a big- and small-step semantics after a
decade-long search for a type-safe core calculus for Scala. Table 1.1
summarizes this search. The decreasing number of shaded boxes as
we go from left to right illustrates that in order to be type-safe, the
formalizations had to lose more and more Scala features — sound
versions of DOT handle hardly more than the essential features of
path-dependent types (displayed on black/dark gray background).
The table also shows that the first two type-safe calculi, νObj and This thesis focuses

on the small-step
version of DOT
by Amin, Grütter,
et al., (2016).

µDOT, did not handle arbitrary intersections of type declarations
since they either exclude intersections or lower bounds, which further
highlights the difficulty of formalizing all the type-member-related
features.

Discovering a sound DOT has already had the following practical
benefits.

1. The formalization of type members enables a better understand- formalization of
Java’s wildcardsing of the features that type members can translate to. For exam-

ple, because DOT can encode Java’s wildcards (which are used
to express variance in type parameters), DOT provides the first
formalization of a type system that supports wildcards (Amin,
Grütter, et al., 2016).

2. DOT has helped reveal feature combinations in Scala and Java discovery of new
source of Scala and
Java unsoundness

that lead to unsoundness. Amin and Tate, (2016) showed how,
using wildcards and null in Java, and type members and null
in Scala, we can convert between arbitrary types without cast-
ing. The authors report that their examples are inspired by the
insights gained from the DOT safety proof.

3. To provide a sound theoretical foundation for Scala, insights design guidelines for
Dottygained from DOT are guiding the design of the Dotty compiler:

– Dotty aims to translate type parameters into type members
and type application into type intersection because these
features are formalized in DOT.

8 introduction

ν
O

bj
O

de
rs

ky
,C

re
m

et
,e

t
al

.,
(2

0
0
3
)

Fe
at

he
rw

ei
gh

t
Sc

al
a

M
ac

ka
y

et
al

.,
(2

0
1
2
)

Sc
al

in
a

M
oo

rs
,P

ie
ss

en
s,

an
d

O
de

rs
ky

,(
2
0
0
8

)

D
O

T
A

m
in

,M
oo

rs
,a

nd
O

de
rs

ky
,(

2
0
1
2

)

µ
D

O
T

A
m

in
,R

om
pf

,a
nd

O
de

rs
ky

,(
2
0
1
4
)

features 1st class classes

not in Scala or dotty subtyping btw rec types

union types

higher-kinded types

inner classes

classes

nominal typing

constructors

singleton types

paths

top

bottom

lower bounds

mixins/intersection

type members

self-names

do
tt

y
fe

at
ur

es

Sc
al

a
fe

at
ur

es

fu
lly

pa
th

-
de

pe
nd

en
t

ty
pe

s

D
O

T

upper bounds

Ò paper
soundness proof

Ò mechanized
soundness proof

Table 1.1: Scala calculi that precede DOT

– Intersection has been added to Dotty to faithfully mimic
the DOT calculus and ensure soundness (Documentation,
2018a).

– Examples of how DOT influences decisions for representing
higher-kinded types in the Dotty compiler are documented
by Odersky, Martres, and Petrashko, (2016).

– Exposing unsoundness due to null is one of the motivations
behind the ongoing Dotty work to discourage the use of
null by forcing programmers to explicitly declare nullability
through union types (Nieto, 2018).

4. Studying DOT has shown that trying to detect and rule outruling out
nonsensical

dependent types can
lead to dead end

bad bounds during type-checking is impractical (Amin, Grüt-
ter, et al., 2016; Amin, Rompf, and Odersky, 2014). Instead, it
is the task of the soundness proof to determine that the types
of values that will appear at runtime will eventually be nar-
rowed to meaningful types with “good bounds”. This realization
has guided the decisions of how to approach bug reports such
as Issue #1050 (Odersky, 2016).

Given the importance of having a formalization for Scala, we need
to be able to extend DOT to bridge the gap between Scala and its core
calculus. However, there are some problems.

1.3 limitations of dot 9

1.3 limitations of dot

To come up with a sound DOT, Amin, Grütter, et al., (2016) had to
make two crucial decisions. These decisions were groundbreaking in
that they enabled the first sound formalization of a difficult concept.
But they also turned out to get in the way of making DOT an extensible
core calculus.

The first decision relates to the soundness proof. To eliminate bad
bounds such as { type A >: String <: Int }, Amin et al. used the in-
sight that if a type is inhabited it cannot have bad bounds since the
value that inhabits the type is a proof that the type makes sense. To
incorporate reasoning about inhabited types into the proof, whenever
the proof depends on the absence of bad bounds, it couples types
with values that inhabit those types. Since a large part of the proof
requires meaningful information from types, this introduces compli-
cated dependencies and reasoning into the proof. As a result, the proof
becomes brittle: when designing extensions it is difficult to predict
what will break.

The second decision directly affects the calculus: it is to restrict path-
dependent types exclusively to variables. Type selections on variables
of the form x.A are DOT’s way to underapproximate Scala’s type
selections on arbitrary stable paths x.a1 . . . an.A, which must consist
of immutable fields ai. Restricting paths in path-dependent types
to variables limits the expressivity of DOT and does not allow us
to express a whole class of recursive dependencies between types.
Conversely, generalizing from variables to paths reveals challenging
soundness issues, as we will show in Part III of this thesis.

1.4 this thesis

This thesis addresses the issues of DOT’s complex soundness proof
and incomplete modelling of path-dependent types, which limits
DOT’s applicability as a reusable core calculus for Scala.

1.4.1 Part I: A Simple Soundness Proof for DOT

The first step towards a reusable calculus is to simplify the DOT
soundness proof.

Abstract type members allow DOT to express custom subtyping
relationships within the calculus. For example, the recursive type

µ(a : tSmallFish : K..Ju^

tMediumFish : a.SmallFish..a.BigFishu^
tBigFish : K..Ju)

contains three abstract type members. SmallFish and BigFish are fully
abstract: they can be anything between K and J, whereas MediumFish

10 introduction

must be a supertype of SmallFish and a subtype of BigFish. Since
SmallFish ă: MediumFish ă: BigFish, by transitivity, SmallFish must be
a subtype of BigFish, thus allowing us to encode fish size in the type
system. Even though the definitions of SmallFish or BigFish say nothing
about their size, when we instantiate these abstract type members,
the type system will ensure that the declared subtyping relationships
hold.

The challenge of the DOT soundness proof is to show that the type
system will accept “meaningful” type declarations while ruling out
nonsensical types such as tStrangeFish : Piranha..Goldfishu. The proof
of Amin, Grütter, et al., (2016) addresses this problem by requiring
that all typing contexts be inhabited with values: to show that a type
is valid, it must be coupled with a value of that type.

The insight of requiring inhabited typing contexts allowed Amin,
Grütter, et al., (2016) to present the first type-safe calculus with path-
dependent types. The drawback of this proof is, however, that a signif-
icant part of it combines reasoning about types, variables, and values.
The proof becomes not just intricate but brittle, making it hard to
predict the effects of even the simplest changes.

To make the DOT soundness proof easier to work with, I present a
simplified soundness proof with the following contributions:

– A modular proof that reasons about types, values, and operational
semantics separately.

– The concept of inert typing contexts, a syntactic characterization
of contexts that rule out any nonsensical subtyping that could
be introduced by abstract type members.

– A simple proof recipe for deducing properties of terms from their
types in full DOT while reasoning only in a restricted, intuitive
environment free from the paradoxes caused by abstract type
members. Multiple lemmas follow the same recipe, and follow-
ing the recipe can facilitate the development of new lemmas
needed in future extensions for DOT.

– A Coq formalization of this DOT soundness proof.

The result is a modular, simple proof of DOT type safety, which
enables us to formalize other constituents of Scala, such as classes
and inheritance, by a translation to the core features of DOT. The
simple soundness proof was developed in collaboration with Ifaz
Kabir, Paul He, and Ondřej Lhoták.

1.4.2 Part II: A DOT With Mutable References

To illustrate that the developed DOT soundness proof is indeed simple,
I present a case study of extending DOT with support for ML-style

1.4 this thesis 11

mutable references. The extension, called Mutable DOT, adds support
for a heap; the ability to create, update, and dereference mutable
references; and reference types. Proving Mutable DOT sound involved
adding the following to the simple soundness proof:

– a new case to the definition of inert types: any reference type is
inert;

– an additional case to the definitions of invertible typing for
variables and invertible typing for values;

– two new canonical forms lemmas for values and variables of a
reference type; these lemmas follow the proof recipe;

– the mutation-related cases to the proof-recipe lemmas that trans-
late tight into invertible typing, and to the final progress and
preservation lemmas.

Extending DOT with mutation reveals two aspects of working with
DOT and the simple proof. On the one hand, it shows that if the
change to the calculus involves mostly adding new forms of values
and types then it can be fairly easy and straightforward to add new
features to the calculus. In the case of mutation, the change involves
adding a new type of values (locations) and types (reference types).
Once we know what exactly we want to extend the calculus with, it is
easy to extend the proof.

However, the challenge with DOT is usually to know how to re-
design the calculus: to understand and predict what exactly the ex-
tended DOT should look like. Even in the case of mutation, a seem-
ingly small and simple change, it was not obvious how to design the
mutable store. Specifically, in order to maintain soundness, the mu-
table store had to map locations to variables as opposed to values, as
would be more conventional. In the second part of this thesis I present
the resulting calculus, show that our design decisions for Mutable
DOT are sound, correct, and expressive, and explain in detail how to
extend the simple proof to support mutation.

1.4.3 Part III: A DOT With Fully Path-Dependent Types

The final step towards a core calculus for Scala is to formalize path-
dependent types in their full expressivity. The goal is to allow DOT to
have paths of arbitrary length: such paths are admissible in Scala, but
not expressible in DOT.

The DOT calculus is defined using Administrative Normal Form
(ANF). ANF requires that function applications x y and path selections
z.a always occur on variables: as we will show in Chapter 2, each of x,
y, z must be either bound in a let expression or lambda abstraction,
or be the self-variable of an object. Most of the time, this does not

12 introduction

limit expressivity, because we can chain sequences of let bindings to
obtain the complex expressions that we need. The exception to that is
path-dependent types.

Consider the following Scala object:

val o = {
val a = new { type A = Any }
type B = this.a.A

}

The definition of B cannot be expressed in DOT. B refers to type
member A, which is nested inside the definition of another field a.
Field accesses always constitute paths at least of length two, since
we must reference the object (in this case o) that the fields belong
to. As we will show in Chapter 17, any attempts at modifying the
example to shorten the path to A involve flattening the structure of
the whole program which disallows nesting, a fundamental feature
of object-oriented programming. To model the relationships between
classes that refer to each other from nested packages we thus need to
use paths of arbitrary length.

Allowing full paths in DOT poses several challenges:

1. As we will show, to maintain soundness and avoid the badavoid
non-terminating

paths
bounds issue we must ensure that type selections occur only on
normalizing (i.e. terminating, acyclic) paths.

2. At the same time, the calculus should still permit non-terminatingallow recursion

paths in general, since that is necessary to express recursive
functions.

3. We must be able to track equality between paths that alias thetrack path equality

same object, while distinguishing between paths that reference
syntactically equal objects.

4. Reasoning about paths of arbitrary length poses additional proof-proof engineering of
paths engineering challenges. For example, the presence of paths intro-

duces new possibilities for cyclic typing derivation which makes
doing induction on typing difficult. Another problem is the use
of paths where DOT uses variables: ANF allowed the original
DOT proof to operate on objects and recursive types at their
“outermost” level, while the pDOT proof needs to look inside an
object’s nested field definitions, supporting recursive reasoning
about the correspondences between objects and their types at
the nested levels.

In the last part of my thesis I present pDOT, a generalization of DOT
with paths of arbitrary length. pDOT addresses the above challenges
as follows:

1. To avoid unsoundness, the following considerations guided the
design of pDOT:separate path lookup

from operational
semantics

1.4 this thesis 13

– To ensure that paths are terminating we define them to be
irreducible in the operational semantics.

– At the same time, we define a path lookup operation that
retrieves the value that a path refers to in the runtime
environment, and show that paths that have the types of
values always reference a value of the same type.

– We restrict how objects are defined and typed at nested
levels while still allowing type abstractions that are even
more expressive than DOT’s.

2. To allow non-terminating paths pDOT supports cyclic references allow cyclic paths

between paths which makes the calculus less restrictive and also
easier to define.

3. To track path aliasing in the type system we use singleton types. singleton types track
path equalityA singleton type p.type is inhabited with only one value: p. If a

path p has a singleton type q.type it signals to the type system
that p and q are aliases. The use of singleton types makes pDOT
also the first calculus that formalizes that Scala feature.

4. The pDOT type-safety proof handles arbitrary paths in places proof is less “simple”

where DOT uses variables using various approaches. For exam-
ple, the proof recipe is stratified into additional stages that allow
it to avoid additional sources for cyclic typing derivations. The
proof is presented in detail in Chapter 21.

1.4.4 Contributions

In summary, this thesis makes the following contributions:

1. A soundness proof that is modular because it decouples the Part I:
simple DOT proofreasoning of types and values from each other and simple because

it presents a simple recipe that one can follow whenever they
need to make sense of types.

2. A case study of adding mutable references to DOT that provides Part II:
DOT with mutationan extension of DOT with a fundamental Scala feature and

shows how easy it is to extend the simple proof.

3. The pDOT calculus, a generalization of DOT that lifts the type- Part III:
DOT with full pathsselection-on-variables restriction and supports paths of arbitrary

length. pDOT fully formalizes path-dependent types; it can
express the whole variety of class dependencies that are possible
in Scala, and allows us to unleash the full expressive power of
path-dependent types.

2
B A C K G R O U N D : T H E D O T C A L C U L U S

x, y, z variable

a, b, c term label

A, B, C type label

t, u term

v value

d definition

S, T, U type

Metavariables used
throughout the the-
sis

t, u :=

x

x.a

v

x y

let x = t in u

v :=

ν(x : T)d

λ(x : T) t

d :=

ta = tu

tA = Tu

d^ d1

S, T, U :=

J

K

ta : Tu

tA : S..Tu

x.A

S^ T

µ (x : T)
@(x : S) T

Figure 2.1: Abstract
syntax of DOT

The development in this thesis follows the variant of the DOT calculus
defined by Amin, Grütter, et al., (2016).

2.1 dot abstract syntax

We begin by describing the abstract syntax of the calculus. DOT defines
two forms of values v:

– A lambda abstraction λ(x : T) t is a function with parameter x of
type T and a body consisting of the term t.

– An object of type T with definitions d is denoted as ν(x : T)d.
The body of the object consists of the definitions d, which are
a collection of field and type member definitions, connected
through the intersection operator. The field definition ta = tu
assigns a term t to a field labeled a, and the type definition
tA = Uu defines the type label A as an alias for the type U. The
object also explicitly declares a recursive self, or “this”, variable
x. As a result, both T and d can refer to x.

A DOT term t is a variable x, value v, field selection x.a, function
application x y, or let binding let x = t in u. To keep the syntax simple,
the DOT calculus uses administrative normal form (ANF); as a result,
field selection and function application can involve only variables, not
arbitrary terms.

A DOT type T can be one of the following:

– A dependent function type @(x : S) T is the type of a function with
a parameter x of type S, and with the return type T, which can
refer to the parameter x.

– A recursive type µ (x : T) declares an object type T which can
refer to its self-variable x.

– A field declaration ta : Tu states that the field labeled a has type T.

– A type declaration tA : S..Tu specifies that an abstract type mem-
ber A is a subtype of T and a supertype of S.

– A type projection x.A is the type assigned to the type member
labelled A of the object x (ANF allows type projection only on
variables).

– An intersection type S^ T is the most general subtype of both S
and T.

15

16 background : the dot calculus

– The bottom type K and the top type J correspond to the bottom
and top of the subtyping lattice, and are analogous to Scala’s
Nothing and Any.

2.2 dot operational semantics

The DOT reduction relation operates on terms whose free variables arethe store γ maps
variables to values:

γ ::=∅
|γ, x ÞÑ v

bound in a runtime value environment, or store, γ that maps variables
to values.

Variables and values are considered normal form, i. e. they are
irreducible. In particular, objects ν(x : T)d are values, and the fields of
an object are not evaluated until those fields are selected. Because in
DOT fields are thus lazily evaluated, they are similar to Scala’s lazy vals
which declare immutable, lazily evaluated values.1 The reduction rules1 Evaluating fields

strictly would
require DOT to
introduce a field

initialization order
which would

complicate the
calculus. DOT

deliberately leaves
initialization as an

open question. For a
DOT with

constructors and
strict fields,

see Kabir and Lhoták,
(2018).

use ANF to ensure that before a term is used in a function application
or field selection it is reduced to a value that is assigned to a variable
through let bindings.

γ(x) = ν(x : T) . . . ta = tu . . .

γ | x.a ÞÝÑ γ | t
(Proj)

γ(x) = λ(z : T) t

γ | x y ÞÝÑ γ | t [y/z]
(Apply)

γ | let x = y in t ÞÝÑ γ | t [y/x] (Let-Var)

γ | let x = v in t ÞÝÑ γ, x ÞÑ v | t (Let-Value)

Figure 2.2: DOT re-
duction rules

γ | t ÞÝÑ γ1 | t1

γ | let x = t in u ÞÝÑ γ1 | let x = t1 in u
(Ctx)

We denote the reflexive, transitive closure of ÞÝÑ as ÞÝÑ˚ .

2.3 dot typing rules

The DOT typing rules are presented in Figure 2.3. The rules All-I
and {}-I give types to values. An object ν(x : T)d has the recursive
type µ (x : T), where the types T must match, and T must summa-
rize the definitions d following the definition typing rules in Fig-
ure 2.3. Note that due to Def-Typ, each of the type declarations in
an object must have equal lower and upper bounds (i.e. an object
ν(x : tA : S..Uu) tA = Tu is only well-typed if S = U = T). The rules
Var, All-E, Fld-E, Let give types to the other four forms of terms,
and are unsurprising. The recursion introduction Rec-I, recursion

2.3 dot typing rules 17

Term typing
Γ $ t : T

Γ(x) = T

Γ $ x : T
(Var)

Γ, x : T $ t : U x R fv(T)

Γ $ λ(x : T) t : @(x : T)U
(All-I)

Γ $ x : @(z : S) T Γ $ y : S

Γ $ x y : T [y/z]
(All-E)

Γ, x : T $ d : T

Γ $ ν(x : T)d : µ (x : T)
({}-I)

Γ $ x : ta : Tu

Γ $ x.a : T
(Fld-E)

Γ $ t : T
Γ, x : T $ u : U x R fv(U)

Γ $ let x = t in u : U
(Let)

Γ $ x : T

Γ $ x : µ (x : T)
(Rec-I)

Γ $ x : µ (z : T)

Γ $ x : T [x/z]
(Rec-E)

Γ $ x : T Γ $ x : U

Γ $ x : T^U
(And-I)

Γ $ t : T Γ $ T ă: U

Γ $ t : U
(Sub)

Definition typing
Γ $ d : T

Γ $ t : U

Γ $ ta = tu : ta : Uu
(Def-Trm)

Γ $ tA = Tu : tA : T..Tu (Def-Typ)

Γ $ d1 : T1 Γ $ d2 : T2

dom(d1), dom(d2) disjoint

Γ $ d1 ^ d2 : T1 ^ T2
(AndDef-I)

Subtyping
Γ $ T ă: U

Γ $ T ă: J (Top)

Γ $ K ă: T (Bot)

Γ $ T ă: T (Refl)

Γ $ T^U ă: T (And1-ă:)

Γ $ T^U ă: U (And2-ă:)

Γ $ S ă: T Γ $ S ă: U

Γ $ S ă: T^U
(ă:-And)

Γ $ x : tA : S..Tu

Γ $ S ă: x.A
(ă:-Sel)

Γ $ x : tA : S..Tu

Γ $ x.A ă: T
(Sel-ă:)

Γ $ T ă: U

Γ $ ta : Tu ă: ta : Uu
(Fld-ă:-Fld)

Γ $ S2 ă: S1

Γ $ T1 ă: T2

Γ $ tA : S1..T1u ă: tA : S2..T2u

(Typ-ă:-Typ)

Γ $ S2 ă: S1

Γ, x : S2 $ T1 ă: T2

Γ $ @(x : S1) T1 ă: @(x : S2) T2
(All-ă:-All)

Γ $ S ă: T Γ $ T ă: U

Γ $ S ă: U
(Trans)

Figure 2.3: DOT
typing and subtyp-
ing rules (Amin,
Grütter, et al., 2016)

18 background : the dot calculus

elimination Rec-E, and intersection introduction And-I rules apply
only to variables, but the subsumption rule Sub applies to all terms.

The subtyping rules establish the top and bottom of the subtyping
lattice (Top, Bot), define reflexivity and transitivity (Refl, Trans),
and basic subtyping rules for intersection types (And1-ă:, And2-ă:,
ă:-And). As is commonplace, dependent functions are covariant in
the return type and contravariant in the parameter type All-ă:-All.
Field typing is covariant by the rule Fld-ă:-Fld, whereas type mem-
ber declarations are contravariant in the lower bound and covariant
in the upper bound via Typ-ă:-Typ. The most interesting rules that
distinguish DOT are ă:-Sel and Sel-ă:, which introduce an object-
dependent type x.A and define subtyping between it and its bounds.
As we will see, these rules are responsible for much of the complexity
of the safety proof.

2.4 example

This section presents an example DOT program to give the reader a
better intuition for the DOT calculus. This example will come up later
when we talk about mutation in Part II.

Suppose we want to keep track of fish that live in aquariums. In
Scala, we could write:

object AquariumModule {
trait Aquarium {

type Fish
val fish : List [Fish]

}

def addFish(a: Aquarium)(f: a.Fish) =
new Aquarium {

type Fish = a.Fish
val fish = a.fish :+ f

}

val piranhas = new Aquarium {
type Fish = Piranha
val fish = List.empty[Piranha]

}

val goldfish = new Aquarium {
type Fish = Goldfish
val fish = List.empty[Goldfish]

}
}

This program lets us add a fish gf to the goldfish aquarium:

val gf : Goldfish = ...
addFish(goldfish , gf)

2.4 example 19

but it will result in a type error when trying to add gf to the piranha
aquarium:

addFish(piranhas , gf) // expected: piranhas .Fish , actual : goldfish .Fish

The reason the goldfish is protected from the piranhas is that the type
Fish is path dependent, i.e. specific to the run-time Aquarium object that
the fish belongs to. This allows the addFish method to guarantee at
compile time that an aquarium a accepts only fish of type a.Fish.

As a first attempt to define Aquarium in DOT, we can make it an
intersection of two types:

{ Aquarium = {Fish: K..J} ^ { fish : List } }

The first type, tFish : K..Ju, declares a type member Fish with lower
bound K (Nothing) and upper bound J (Any). The second type, tfish : Listu,
is a field declaration of type List that represents the list of fish in the
aquarium. The type List is assumed to be defined in a library and
contains a type member A for list elements.

A problem with the current Aquarium implementation is that it does
not say that the type of elements in the fish list should be Fish. More
specifically, the list elements should have the Fish type of the Aquarium
runtime object to which the list belongs. To let the Aquarium type refer
to its own runtime object a, we make Aquarium a recursive type:

{ Aquarium = µ(a: {Fish: K..J} ^

{ fish : List ^ {A: a.Fish .. a.Fish}}}

Here, to express that the type Fish should belong to the object a, we
use the type selection a.Fish. The type a.Fish is then used as a refinement
of List’s element type A. In this way, the list can contain only the fish
that are allowed in the aquarium a.

We can now define addFish as a function that takes an aquarium a
and a fish f of type a.Fish, and creates a new aquarium a2:

{ addFish = λ(a: aq.Aquarium).λ(f : a.Fish) .
ν(a2: aq.Aquarium ^{ Fish: a.Fish .. a.Fish }) {
Fish = a.Fish
fish = ... }}

The construct ν(x : T)d creates a new object of type T with a self-
variable x and definitions d. In this case, the definitions are used to
initialize the Fish type and fish list of the new aquarium. The Fish type
is assigned a.Fish. The new fish list needs to append the fish f to the
old a.fish list.

To be able to add an element to a list, we need access to an append
method, which we will get from List. Suppose that the List type is
defined in a collections library. It can be defined as a recursive type
µ(list : . . .) that declares an element type A and an append function.
The append function takes a parameter a of the element type list.A and
returns a List of elements that are subtypes of a.A:

let collections = ν(col :

20 background : the dot calculus

{List : µ(list : ({A: K..J} ^

{append: @(a: list .A)(col . List ^ {A: K .. a.A}))}) ...
in ...

With an append method on Lists, we can fully implement the addFish
method. The field a2.fish should be defined as a.fish.append(f). How-
ever, since DOT uses ANF, before performing any operations on terms,
we have to bind the terms to variables:

fish = let oldFish = a. fish in
let append = oldFish.append in
append f

For better readability, we introduce the following DOT abbreviations
(similar ones are used by Amin, Grütter, et al., (2016)):

tAu ” tA : K..Ju t u ” let x = t in
tA : Tu ” tA : T..Tu let y = u in x y

tA ă: Tu ” tA : K..Tu t.L ” let x = t in x.L

tD1; D2u ” tD1u ^ tD2u ν(x)d : T ” ν(x : T)d

where D1, D2 are declarations or definitions of either fields or types,
and L is a label of a type or field.

With those abbreviations, the full aquarium program example looks
as follows:

let collections = ν(col) { ... }:
{List : µ(list : (A; append: @(a: list .A)(col . List ; A <: a.A))}

in ν(aq) {
Aquarium = µ(a: {Fish; fish : { collections . List ; A: a.Fish}});
addFish = λ(a: aq.Aquarium).λ(f : a.Fish) .

ν(a2) {
Fish = a.Fish
fish = a. fish .append f

}: {aq.Aquarium; Fish: a.Fish}
}: {Aquarium: µ(a: {Fish; fish : { collections . List ; A: a.Fish}});

addFish: @(a: aq.Aquarium)@(f: a.Fish)
{aq.Aquarium; Fish: a.Fish}}

Part I

A S I M P L E S O U N D N E S S P R O O F F O R D O T

3
I N T R O D U C T I O N

Scala’s type system is notoriously complex. It allows one to define
abstract types as members of objects. To become less abstract and more
interesting, these type members can be lower- and upper-bounded
by other types. The type bounds can be arbitrary: there is no rule
or restriction on what the relationship between a type member and
its bounds should be. Furthermore, a type member A’s type bounds
can change when A’s enclosing class is composed with other types,
for example, through mixin composition. The type bounds can also
depend on other objects. This includes A’s own enclosing object, which
allows A’s bounds to recursively reference A itself.

If the role of a type-soundness proof is to ensure that we can safely
rely on types to give us meaningful information about the values in
a program then it is unsurprising that a soundness proof for Scala’s
type system is hard. After all, it is the task of that proof to show that a
type system with the above features is not too expressive for its own
good: that it does not let us express anything we want, that it will
not allow arbitrary subtyping relationships between types, and that
instead it will provide us with meaningful type information about our
programs.

This is why 2016 was an exciting year for those who desire a formal-
ism to understand and reason about the unique features of Scala’s type
system. Mechanized soundness results were published for the DOT

calculus (Amin, Grütter, et al., 2016; Amin and Rompf, 2017; Rompf
and Amin, 2016b). These proofs were the culmination of an elusive
search that spanned more than ten years. The chief subtleties and
paradoxes inherent in DOT and the Scala type system, which made
the proof so challenging, were documented along the way (Amin,
Moors, and Odersky, 2012; Amin, Rompf, and Odersky, 2014).

Since the DOT calculus exhibits such subtle and counterintuitive
behaviour, and since the proofs are the result of such a long effort, it
is to be expected that the proofs must be complicated. The calculus is
dependently typed, so it is not surprising that the lemmas that make
up the proofs reason about tricky relationships between types and
values. In some contexts, the type system admits typings that seem just
plain wrong, and give no hope for soundness, so it seems necessary to
have lemmas that reason simultaneously about the intricate properties
of values, types, and the environments that they inhabit.

A core calculus needs to be easy to extend. Some extensions of DOT we address the
problem of paths
in Part III

are necessary even just to model essential Scala features. As a promi-
nent example, types in Scala may depend on paths (e. g. x.a1.¨¨¨.an.A)

23

24 introduction

but types in the existing DOT calculi can depend only directly on
variables (x.A). Path-dependent types are needed to model essential
features such as classes and traits (as members nested in objects and
packages) and the famous cake pattern (Odersky and Zenger, 2005b).
Another important Scala feature to be studied in DOT are implicit
parameters. Moreover, language modifications and extensions are the
raison d’être of a core calculus. DOT enables designers to experiment
with exciting new features that can be added to Scala, to tweak them
and reason about their properties before attempting to integrate them
in the compiler with the complexity of the full Scala language.

The complexity of the proof is a hindrance to such extension and
experimentation. Over the past ten years, DOT has been designed and
re-designed to be just right, so that the brilliant lemmas that ensure
its soundness hold and can be proven. When the DOT calculus is
disrupted by a modification, it is difficult to predict which parts of the
proof will be affected. Experimenting with modifications to DOT is
difficult because each tweak requires many lemmas to be re-proven.

The goal of the first part of this thesis is a soundness proof that is
simpler, more modular, and more intuitive. Such a proof separates
the concepts of types, values, and operational semantics, and reasons
about one concept at a time. Then, if a language extension modifies
only one concept, such as typing, the necessary changes are localized
to the parts of the proof that deal with types. We also aim to isolate
most of the reasoning in a simpler system that is immune to the
paradox of bad bounds, the key challenge that plagued the long searchthe bad-bounds issue

is described
in Chapter 4

for a soundness proof. In this system, our reasoning can rely on
intuitive notions from familiar object calculi without dependent object
types (Pierce, 2002). The results of this reasoning are lifted to the full
DOT type system by a single, simple theorem.

The main focus of our proof is on types. Dependent object types aresee Chapter 5 for the
simple DOT proof the one feature that distinguishes DOT, so we aim to decouple that

one feature, which mainly affects the static type system, from other
concerns. We focus on proving the properties that one expects of types,
and deliberately keep the proof independent of other aspects, such as
operational semantics and runtime values, which are similar in DOT
as in other object calculi. Of course, a soundness proof must eventually
speak about execution and values, but once we have the necessary
theory to reason about types, these other concerns can be handled
separately, at the end of the proof, using standard proof techniques.
Our final soundness theorem is stated for the small-step operational
semantics given by Amin, Grütter, et al., (2016), but that is only the
final conclusion; the theory that we develop about dependent object
types would be equally applicable in a proof for a big-step operational
semantics.

The power of DOT is also its curse. DOT empowers a program
to define a domain-specific type system with a custom subtyping

introduction 25

lattice inside the existing Scala type system. This power has been
used to encode in plain Scala expressive type systems that would
otherwise require new languages to be designed. But this power also
enables typing contexts that make no sense, in which types cannot be
trusted and thus become meaningless. For example, a program could
define typing contexts in which an object, which is not a function,
nevertheless has a function type. Since such “crazy” contexts are
possible, a soundness proof needs to consider them (but prove that
they are harmless during execution).

Besides the general pursuit of modularity, the simplicity of our new
proof depends on two main ingredients.

The first ingredient is inert types and inert typing contexts. The essen- inertness is defined
in Section 5.2tial property of an inert type is that if all variables have inert types,

then no unexpected subtyping relationships are possible, so types can
be trusted, and none of the paradoxes are possible. An important part
of the soundness proof is to ensure that a term cannot evaluate until
the types of all its free variables have been narrowed to inert types.

We define inertness as a concise, easily testable syntactic property
of a type. The definition consists of only two non-recursive inference
rules, so it can be easily inverted when it occurs in a proof. By contrast,
existing DOT proofs achieve similar goals using properties that char-
acterize types by the existence of values with specific relationships to
those types. The benefit of our inertness property is that it involves
only a type, not any values, and it is defined directly, not via existential
quantification of some corresponding value.

The second ingredient is tight typing, a small restriction of the DOT tight typing is
discussed
in Section 5.3.

typing rules with major consequences. We did not invent tight typing;
it appears as a technical definition in the proof of Amin, Grütter, et al.,
(2016). Our contribution is to identify and demonstrate just how useful
and important tight typing is to a simple proof. Amin, Grütter, et al.,
(2016) use tight typing in a collection of technical lemmas mixed with
reasoning about other concerns, such as general typing (the full typing
rules of DOT) and correspondences between values and types. In our
proof, however, tight typing takes centre stage; it is the main actor that
enables intuition and simplicity.

Tight typing neutralizes the two DOT type rules that enable a
program to define custom subtyping relationships. Tight typing immu-
nizes the calculus: even if a typing context contains a type that is not
inert, tight typing prevents it from doing any harm. The paradoxes
that make it challenging to work with DOT disappear under tight
typing. Without those two typing rules, the calculus behaves very
differently, like object calculi without dependent object types, and our
reasoning can rely on familiar properties that we are used to from
these calculi.

Of course, DOT with tight typing is not at all the real DOT: it lacks
the power to create customized type systems, and it is uninteresting;

26 introduction

it is just another calculus with predictable behaviour. One simple
theorem bridges the gap by showing that in inert contexts, tight typingTheorem 6 ($ to $#)

is in Section 5.3 has all the power of general typing. Therefore, all the reasoning that we
do in the intuitive environment of tight typing applies to the full power
of DOT. Even the proof of the theorem itself reasons entirely with tight
typing, without having to deal with the paradoxes of general DOT
typing, and without having to reason about relationships between
types and values.

Combining these two ingredients, we contribute a unified general
recipe that can be used whenever a proof about DOT needs to deduce
information about a term from its type. Many of our lemmas follow
this recipe. The first step of the recipe, which should be the first step
of any reasoning about types in DOT, is to drop down from general
typing to tight typing using the above theorem. The purpose of the
remaining steps is to make inductive reasoning as easy and systematic
as possible.

contributions

This part of the thesis presents a simplified and extensible soundness
proof for the DOT calculus. It contributes the following:

– A modular and extensible proof that reasons about types, values,Chapter 6 describes
how to extend the

simple proof
and operational semantics separately.

– The concept of inert typing contexts, a syntactic characterization
of contexts that rule out any non-sensical subtyping that could
be introduced by abstract type members.

– A simple proof recipe for deducing properties of terms from their
types in full DOT while reasoning only in a restricted, intuitive
environment free from the paradoxes caused by abstract type
members. Multiple lemmas follow the same recipe, and follow-
ing the recipe can facilitate the development of new lemmas
needed in future extensions for DOT.

– A Coq formalization of the simple DOT soundness proof.Coq proof:
git.io/simple-dot-

proof

https://git.io/simple-dot-proof
https://git.io/simple-dot-proof

4
B A D B O U N D S

The type selection subtyping rules ă:-Sel and Sel-ă: enable users to
define a type system with a custom subtyping lattice. If a program
defines a function λ(x : tA : S..Uu) t, then t is typed in a context in
which S is considered a subtype of U, because S ă: x.A ă: U. The

Γ $ x : tA : S..Tu

Γ $ S ă: x.A
(ă:-Sel)

Γ $ x : tA : S..Tu

Γ $ x.A ă: T
(Sel-ă:)

soundness proof must ensure that such a user-defined subtyping
lattice does not cause any harm, i.e., cannot cause a violation of type
soundness of the overall calculus.

Let S be the object type ta : Ju and U be the function type @(z : J)J.
Then the following is a valid and well-typed DOT term:

S = ta : Ju

U = @(z : J)J
λ(x : tA : S..Uu) let y = ν(y : S) ta = y.au in y y

How is this possible? The inner term y y is a function application
applying y to itself, but y is bound by the let to an object, not a
function. How can y appear in a function application when it is not
a function? This is possible because y has the object type S, and in
the body of the lambda, we have the subtyping chain S ă: x.A ă: U.
The declaration of the lambda asserts that x.A is a supertype of S and
a subtype of U, and therefore introduces the new custom subtyping
relationship S ă: U. Inside the body of the lambda, the object type S
is a subtype of the function type U, so since the object y has type S, it
also has the function type U. The function application of object y to
itself is therefore well-typed in this context.

This is crazy, the reader may be thinking. Indeed, in an environment
in which subtyping can be arbitrarily redefined, types cannot be
trusted. In particular, we cannot conclude from the fact that y has the
function type S that it is indeed a function; actually, it is an object.
The seemingly obvious fix is to require S to be a subtype of U when
the parameter x of the lambda is declared to have type tA : S..Uu. But
as we will discuss in Chapter 7, this seemingly obvious fix does not
work, and the struggle to try to make it work has caused much of the
difficulty in the ten-year struggle for a DOT soundness proof.

How can DOT be sound then, when it is so crazy? After all, the
function application y y is well-typed but its evaluation gets stuck,
because y is not a function, so how can DOT be sound? The key is
that the DOT semantics is call-by-value. In order to invoke the body
of the lambda, one must provide an argument value to pass for the
parameter x. This value must contain a type assigned to A that is both
a supertype of U and a subtype of S. If no such type exists, then no
such argument value can exist, so the lambda cannot be called, so its
body containing the crazy application y y cannot ever be executed.

27

28 bad bounds

Therefore, this term is not a counterexample to the soundness of the
DOT type system.

Why should DOT have such a strange feature? The ability to define
a custom subtyping lattice turns out to be very useful. For example,
we can define the term:

λ(x : tA : K..Ju^ tB : x.A..x.Cu ^ tC : K..Ju) t

In the body t of this lambda, we can make use of unspecified opaque
types A, B, and C, making use of only the condition that A ă: B ă: C.
We can use this feature to define arbitrary type systems within the
language. For example, Scalas and Yoshida, (2016) have implemented
session types, a feature that usually requires a custom-designed lan-
guage, inside plain Scala. As another example, Osvald et al., (2016)
used this ability to define a lattice of lifetimes within the Scala type sys-
tem for categorizing values that cannot outlive different stack frames.
Even the well-known Scala cake pattern (Odersky and Zenger, 2005b)
is built using this feature.

To reconcile a custom subtyping lattice with a sound language,
we only need to force the programmer to provide evidence that the
custom lattice does not violate any familiar assumptions (e.g., it does
not make object types subtypes of function types). This evidence takes
the form of an argument value that must be passed to the lambda
before the body that uses the custom type lattice can be allowed to
execute. This value must be an object that provides existing types that
satisfy the specified custom subtyping constraints. In our example,
this is easy: it suffices to pass the same type, such as J, for all three
type parameters, since J ă: J ă: J. However, the types are opaque:
when checking the body of the lambda, the type checker cannot use
the fact that A = B = C = J; the body must type-check even under
only the assumptions that A ă: B ă: C.

Since DOT programs can exhibit unexpected subtyping lattices in
some contexts, and since this is unavoidable, an essential feature of
a soundness proof is to clearly distinguish contexts in which types
can be trusted, because any custom subtyping relationships have
been justified by actual type arguments, from contexts in which types
cannot be trusted, because they could have been derived from arbitrary
unjustified custom subtyping relationships. In Section 5.2, we will
formally define this property that types can be trusted, and define a
simple syntactic characterization of inert typing contexts that guarantee
this property. In earlier DOT soundness proofs, the trusted types
property was not precisely defined, and typing contexts in which
there are no bad bounds were defined more indirectly, not in terms of
the types themselves, but in terms of the existence of values having
those types.

5
T H E S I M P L E D O T P R O O F

This chapter describes how inert contexts and three auxiliary typing
judgments (tight, invertible, and precise typing) yield a simple proof
recipe that can be used in the DOT soundness proof whenever one
needs to make sense of types.

5.1 overview

We will first outline the general recipe that we use to reason through-
out the proof about the meaning of a type. The details of each step will
be discussed in the following subsections. We present the overview
on an example proof of Lemma 13, which will be introduced in Sec-
tion 5.5, but the specific example is unimportant; most of the reasoning
throughout the proof follows the same steps, through the same typing
relations, in the same order, using the same reasoning techniques.

Usually, we know that some term has some type (e.g. Γ $ x : ta : Tu),
and we seek to interpret what the type tells us about the term, and to
determine how the type of the term was derived. In this example, we
seek more detailed information about x, for example that the typing
context Γ assigns it an object type Γ(x) = µ (x : ¨¨¨ ^ ta : T1u ^ ¨¨¨), or
the shape of the value that it will hold at run time (e.g. an object
ν(x : ¨¨¨ ^ ta : T1u ^ ¨¨¨)(¨¨¨ ^ ta = t1u ^ ¨¨¨)).

Each such derivation follows the same sequence of steps (although
sometimes only a subsequence of the steps is necessary):

Γ $ x : ta : Tu

Γ $# x : ta : Tu
Theorem 6 ($ to $#)

Γ$¡ x : ta : Tu
Theorem 10 ($# to $¡)

Γ $! x :

a : T1
(

Γ $ T1 ă: T
Induction on $¡

Γ(x) = µ
(
x : ¨¨¨ ^

a : T1
(

^ ¨¨¨
)

Γ $ T1 ă: T
Inversion of $!

where we assume that Γ is inert. Although there are four steps, each
individual step is quite simple. More importantly, each step is modular,
independent of the other steps, and the proof techniques at each step
are either directly reusable (theorems) or easily adaptable (induction)
to proofs of properties other than this specific lemma.

The derivation starts with general typing (Γ $ x : ta : Tu), the typing general typing
Γ $ t : Trelation of the DOT calculus. The key property that makes reasoning

possible is that the typing context Γ is inert. Inert contexts will be
defined in Section 5.2. Inertness ensures that customized subtyping in inert contexts

29

30 the simple dot proof

the program does not introduce unexpected subtyping relationships.
If the context were not inert, any type could have been customized
to have arbitrary subtypes and be inhabited by arbitrary terms, so it
would be impossible to draw any conclusions about a term from its
type.

Knowing that the typing context is inert, we apply Theorem 6 ($ to
$#) to get a tight typing (Γ $# x : ta : Tu), which will be discussed intight typing

Γ $# t : T Section 5.3. A tight typing is immune to any unexpected subtyping
relationships that the program may have defined, so our reasoning
can now rely on familiar intuitions about what types ought to mean
about their terms.

However, the tight typing rules are not amenable to inductive proofs.
Theorem 10 ($# to $¡) gives invertible typing (Γ$¡ x : ta : Tu), which isinvertible typing

Γ$¡ t : T specifically designed to make inductive reasoning as easy as possible.
Invertible typing will be discussed in Section 5.4.

By induction on invertible typing, we obtain a property of all of
the precise types Γ $! x : ta : T1u that could have caused x to have theprecise typing

Γ $! t : T general type ta : Tu. Informally, the precise typing means that the type
Γ(x) given to x by the typing context is an object type containing a
field a of type T1. We will present precise typing in Section 5.3. Precise
typing is also amenable to straightforward induction proofs, so we
can use one to obtain Γ(x).

5.2 inert typing contexts

Recall the function λ(x : tA : S..Uu) t that we discussed in Chapter 4.
If the function appears in a context Γ, its body is type checked in an
extended context Γ, x : tA : S..Uu. The extended context adds a new
subtyping relationship Γ, x : tA : S..Uu $ S ă: U that might not have
held in the original context Γ. In particular, the extended context could
introduce a subtyping relationship that does not make sense, such
as @(x : S) T ă: µ (x : U), or J ă: K. To control such unpredictable
contexts, we define the notion of inert typing contexts and inert types.
Inert types are defined through record types – records whose type
members have equal bounds.

record ta : Tu

record tA : U..Uu

record T record U

record T ^ U

inert @(x : T)U

record T

inert µ (x : T)

definition 1 (Record Types). A record type is an intersection of types
each of which is either a field declaration ta : Tu or a tight type declaration
tA : U..Uu.

definition 2 (Inert Types). A type U is inert if it is either a function
type or a recursive type µ (x : T) where T is a record type.

definition 3 (Inert contexts). A typing context Γ is inert if the type
Γ(x) that it assigns to each variable x is inert.

An inert typing context has the following useful property.

5.3 tight typing 31

property 4 (Inert Context Guarantee). Let Γ be any inert typing context,
t be a closed term and U be a closed type. If Γ $ t : U, then $ t : U.

The significance of this property is that in an inert typing context, a
term t does not have any “unexpected” types that it would not have in
an empty typing context. For example, we can be sure that in an inert
typing context, a function value will not have an object (recursive)
type, and an object will not have a function type. Though we do
not directly apply the property in the proof, it is useful for intuitive
reasoning about typing and subtyping in inert typing contexts.

Every value has an inert type (as long as the value is well formed,
i.e., as long as it has any type at all). This is because the two base
typing rules for values, All-I and {}-I, and the definition typing rules
that they depend on, always assign an inert type to the value. The
converse is not true: not every inert type is inhabited by a value. For
example, we cannot construct a value of type λ(x : J)K.

Returning to the example, suppose now that the function is invoked
with some value v bound to a variable y:

let y = v in (λ(x : tA : S..Uu) t) y.

Recall that the body t is typed with the assumption that S ă: U.
Type checking the overall term ensures that the argument y provides
evidence for that assumption. Specifically, the value v has an inert type,
so y has an inert type. The typing rule for function application requires
subtyping between the argument and parameter types, so the type
of y must have a member tA : T..Tu with S ă: T and T ă: U. (The
bounds T of the type member must be tight because the type is inert.)
The type T that y provides is evidence that justifies the assumption
S ă: U under which the body t of the function was type checked.
During execution, when the function is called, all occurrences of x in
the body t will be replaced by y before evaluation of the body begins.
In general, the semantics ensures that before it begins evaluating a
term (such as t), the term has a type in a context in which all non-inert
types (such as the type of x) have been narrowed to inert types (such
as the type of y).

5.3 tight typing

Although inert contexts provide the assurance of Property 4 (Inert
Context Guarantee), in our proofs, we often need to reason even in con-
texts that are not inert. Moreover, even when we know that a context
is inert, it would be difficult to express the important consequences
of the inert context in every proof that deals with the general DOT
typing and subtyping rules.

Tight typing (Amin, Grütter, et al., 2016) is a slight restriction of
general typing that can bridge the gap between the unpredictability

32 the simple dot proof

Tight term typing
Γ $# t : T

Γ(x) = T

Γ $# x : T
(Var-#)

Γ, x : T $ t : U x R fv(T)

Γ $# λ(x : T) t : @(x : T)U
(All-I-#)

Γ $# x : @(z : S) T Γ $# y : S

Γ $# x y : T [y/z]
(All-E-#)

Γ, x : T; d $ T :

Γ $# ν(x : T)d : µ (x : T)
({}-I-#)

Γ $# x : ta : Tu

Γ $# x.a : T
(Fld-E-#)

Γ $# t : T x R fv(U)

Γ, x : T $ u : U

Γ $# let x = t in u : U
(Let-#)

Γ $# x : T

Γ $# x : µ (x : T)
(Rec-I-#)

Γ $# x : µ (z : T)

Γ $# x : T [x/z]
(Rec-E-#)

Γ $# x : T Γ $# x : U

Γ $# x : T^U
(And-I-#)

Γ $# t : T Γ $# T ă: U

Γ $# t : U
(Sub-#)

Tight subtyping
Γ $# T ă: U Γ $# T ă: J (Top-#)

Γ $# K ă: T (Bot-#)

Γ $# T ă: T (Refl-#)

Γ $# S ă: T Γ $# T ă: U

Γ $# S ă: U
(Trans-#)

Γ $# T^U ă: T (And1-ă:-#)

Γ $# T^U ă: U (And2-ă:-#)

Γ $# S ă: T Γ $# S ă: U

Γ $# S ă: T^U
(ă:-And-#)

Γ $! x : tA : T..Tu

Γ $# T ă: x.A
(ă:-Sel-#)

Γ $! x : tA : T..Tu

Γ $# x.A ă: T
(Sel-ă:-#)

Γ $# T ă: U

Γ $# ta : Tu ă: ta : Uu
(Fld-ă:-Fld-#)

Γ $# S2 ă: S1

Γ $# T1 ă: T2

Γ $# tA : S1..T1u ă: tA : S2..T2u

(Typ-ă:-Typ-#)

Γ $# S2 ă: S1

Γ, x : S2 $ T1 ă: T2

Γ $# @(x : S1) T1 ă: @(x : S2) T2
(All-ă:-All-#)

Figure 5.1: Tight
Typing Rules
(Amin, Grütter,
et al., 2016)

5.3 tight typing 33

Precise variable typ-
ing
Γ $! x : T

Γ(x) = T

Γ $! x : T
(Var-!)

Γ $! x : µ (z : T)

Γ $! x : T [x/z]
(Rec-E-!)

Γ $! x : T^U

Γ $! x : T
(And1-E-!)

Γ $! x : T^U

Γ $! x : U
(And2-E-!)

Precise value typing
Γ $! v : T

Γ, x : T $ t : U x R fv(T)

Γ $! λ(x : T) t : @(x : T)U
(All-I-!)

Γ, x : T; d $ T :

Γ $! ν(x : T)d : µ (x : T)
({}-I-!)

Figure 5.2: Simpli-
fied Precise Typ-
ing Rules based on
(Amin, Grütter, et
al., 2016)

of the general DOT typing rules in arbitrary typing contexts and the
predictable assurances of Property 4 in inert typing contexts. The tight
typing rules are presented in Figure 5.1. They are almost the same as
the general DOT typing rules, except that the ă:-Sel-# and Sel-ă:-#
rules have the restricted premise Γ $! x : tA : T..Tu, so they can be
applied only when the bounds T of the type member A are tight.
Precise typing, denoted $!, is defined in Figure 5.2. The precise type
of a variable x is the type Γ(x) given to it by the typing context Γ,
possibly decomposed using the elimination rules, so that if Γ(x) is an
object type such as µ (x : ¨¨¨ ^ tA : T..Tu ^ ¨¨¨), then x also has just the
type member tA : T..Tu as a precise type. For values, precise typing
applies only the base case rules All-I and {}-I from general typing. In
premises of rules that extend the typing context (All-I-#, Let-#, {}-I-#),
tight typing reverts to general typing in the extended context.

We observe two useful properties of tight typing that together
combine to make it especially convenient for reasoning about DOT
typing. The first property is that tight typing extends the benefits of
Property 4 (Inert Context Guarantee) to all typing contexts, not only
inert ones:

property 5 (Tight Typing Guarantee). Let Γ be any typing context, t
be a closed term and U be a closed type. If Γ $# t : U, then $# t : U and
$ t : U.

The general typing rules that enable DOT programs to define new
user-defined subtyping relationships, ă:-Sel and Sel-ă:, are restricted
in tight typing to ă:-Sel-# and Sel-ă:-#, which allow only to give an
alias to an existing type, but not to introduce new subtyping between

Γ $ x : tA : S..Tu

Γ $ S ă: x.A ă: T
(ă:-Sel, Sel-ă:)

Γ $! x : tA : T..Tu

Γ $# T ă: x.A ă: T
(ă:-Sel-#, Sel-ă:-#)

existing types.
Property 5 makes reasoning in tight typing easy: we never have

to worry about unexpected custom subtyping relationships being
introduced by the program, and we do not need to reason about
whether we are in an inert typing context, because tight typing gives
the guarantee in all contexts.

34 the simple dot proof

Although tight typing satisfies the desirable intuitive Property 5,
it is not DOT. In particular, tight typing does not, in general, enable
a program to use a custom-defined subtyping lattice that is the key
feature of dependent object types. We would like the best of both
worlds: to allow DOT programs to enjoy the full power of general
typing, yet to reason about our proofs with the intuitive tight typing.
For this, we need the second property of tight typing.

The second important property of tight typing is that in an inert
typing context, tight typing is equivalent to general DOT typing:

theorem 6 ($ to $#). If Γ is an inert context, then Γ $ t : T implies
Γ $# t : T, and Γ $ S ă: U implies Γ $# S ă: U.inert Γ Γ $ t : T

Γ $# t : T
($ to $#) We delay giving the proof of the theorem until after some discussion.

These two properties motivate and justify our recommendation that
tight typing should be at the core of all reasoning about the meaning
of types in DOT. Tight typing is predictable, like the type systems ofThe theorem

statements in side
notes as a quick

overview or refresher
and might exclude

some details, such as
existential

quantifiers.

familiar calculi without dependent object types, yet in an inert typing
context, it has the same power as general DOT typing. Therefore,
every proof with a premise involving general typing and an inert
typing context should immediately apply Theorem 6 ($ to $#) to drop
down into the intuitive environment of tight typing for the rest of the
reasoning.

What if we do not have an inert context as a premise, and therefore
cannot apply Theorem 6? In that case, we should not reason about the
meanings of types at all. As we saw in Chapter 4, in such a context,
a term could be given an arbitrary type by custom subtyping rules.
Therefore, we cannot deduce anything about a term from its type, and
it would be futile to try.

In summary, inert contexts, tight typing, and Theorem 6 that justifies
reasoning in tight typing should be the cornerstones of any reasoning
about the meaning of types in the DOT calculus.

How shall we prove Theorem 6, then? It is tempting to prove the
theorem by trying to compare various properties of the tight and
general typing relations, the closures of the tight and general typing
rules. This approach was taken in the proof of Amin, Grütter, et al.,
(2016) for a related theorem (with the same conclusion but different
premises). The typing relations are very different from each other
(general typing is much more powerful), but the rules that give rise to
them are quite similar. It is much easier, therefore, to instead show that
the rules are equivalent in an inert context. The only rules in general
typing missing from tight typing are the ă:-Sel and Sel-ă: rules. Our
goal is therefore to replace these rules with a lemma:

lemma 7 (Sel-ă:-# Replacement). If Γ is an inert context, then if Γ $#

x : tA : S..Uu, then Γ $# S ă: x.A and Γ $# x.A ă: U.
inert Γ

Γ $# x : tA : S..Uu

Γ $# S ă: x.A ă: U
(Sel-ă:-# Replacement)

One nice property of this lemma is that it is stated entirely in terms
of tight typing. Thus, to prove it, we can ignore the unpredictable

5.4 inversion of tight typing 35

world of general typing, and work exclusively in the intuitive world
of tight typing.

But how can we prove it? We would like to apply the ă:-Sel-# and
Sel-ă:-# rules. Their premises are Γ $! x : tA : T..Tu. Therefore, we
need to invert tight typing, to show the following:

lemma 8 (Sel-ă:-# Premise). If Γ is an inert context, then if Γ $#

x : tA : S..Uu, then there exists a type T such that Γ $! x : tA : T..Tu,
Γ $# S ă: T, and Γ $# T ă: U.

inert Γ

Γ $# x : tA : S..Uu

Γ $! x : tA : T..Tu

(Sel-ă:-# Premise)
We will discuss how to invert tight typing to prove this lemma in

Section 5.4.
Using Lemma 8, proving Lemma 7 (Sel-ă:-# Replacement) is easy:

Proof of Lemma 7. Apply Lemma 8, then ă:-Sel-# and Sel-ă:-#, to get
Γ $# S ă: T ă: x.A ă: T ă: U. The result follows by Trans-#.

Using Lemma 7, proving Theorem 6 ($ to $#) is now also quite
easy.

Proof of Theorem 6. The proof is by mutual induction on the tight typ-
ing and subtyping derivations of Γ $ t : T and Γ $ S ă: U. In general,
for each rule of general typing, we invoke the corresponding rule of
tight typing. The premises of the tight typing rules differ from those of
the general typing rules in that they require tight typing in rules that
do not extend the context. Since the unextended context is inert, the
general premise implies the tight premise by the induction hypothesis.
Premises that do extend the context use general typing, so nothing
needs to be proven for them. The exception is the ă:-Sel and Sel-ă:
rules. Lemma 7 is an exact replacement for these rules, so we just
apply it. Despite the long explanation, the proof in Coq is only two
lines long.

5.4 inversion of tight typing

Although reasoning with tight typing is intuitive because it obeys
Property 5 (Tight Typing Guarantee), we often need to invert the tight
typing rules to prove properties such as Lemma 8, which we used
in the proof of Lemma 7. More generally, we need to prove that if
Γ $# x : T, where T is of a certain form, then Γ(x) = U, and there is a
certain relationship between T and U.

The obvious approach to proving such inversion properties is by
induction on the derivation of the tight typing. This usually fails,
however, because of cycles in the tight typing rules. Each language
construct typically has both an introduction and an elimination rule,

Γ $# x : T

Γ $# x : µ (x : T)
(Rec-I-#)

Γ $# x : µ (z : T)

Γ $# x : T [x/z]
(Rec-E-#)

and the two form a cycle. For example, if Γ $# x : T, then Γ $#

x : µ (x : T) by Rec-I-#, so again Γ $# x : T by Rec-E-#. Such cycles
block inductive proofs because a proposition Γ $# x : T is justified by

36 the simple dot proof

Γ $# x : µ (x : T), which in turn is justified by the original proposition
Γ $# x : T. The solution is to define a set of acyclic, invertible rules on
which induction is easy, and to prove that the invertible rules induce
the same typing relation as the cyclic tight typing rules.

The construction of the invertible typing rules is simplified by two
restrictions:

1. We only ever need to invert typing rules in inert typing contexts.

2. We only ever need to invert typings of variables and values, not
of arbitrary terms.

In the invertible rules, we can thus exclude rules that cannot apply to
variables or values, and rules that cannot apply to inert types or to
types derived from inert types.

It remains to decide, when facing a cycle of two rules that introduce
and eliminate a given language construct, which one of the two rules
to remove and which one to keep in the acyclic, invertible rule set. In
general, because a construct can be introduced an unbounded number
of times in tight typing, we must keep the introduction rule. For
example, if x has type T, then x also has type µ (y : µ (y1 : µ (y2 : T))),
and the invertible rules must generate this type. On the other hand,
the base case of the typing rules for variables, the rule Var-#, gives
each variable x the type Γ(x), which in an inert context is an inert
type, and can therefore be a recursive type containing an intersection
type. Since the tight typing rules eliminate the recursion and the
intersection, the invertible rules must also eliminate them. It seems
that we have reached a contradiction: the invertible rules must have
both introduction and elimination rules for recursive and intersection
types.

The solution is to split the invertible rules into two phases. The first
phase of rules contains all the elimination rules. After all necessary
eliminations have been performed, a second phase containing only
introduction rules can then perform all necessary introductions. By
splitting the rules into two phases, we ensure that no derivation
can cycle between introductions and eliminations, so the rules are
invertible. It turns out that we already have rules for the first phase:
the precise typing rules introduced in Section 5.3 already contain all of
the elimination rules that apply to variables and values, and eliminate
from the type of a variable all constructs that can appear in an inert
type.2 To construct the invertible introduction rules, we propose the2 Note that even the

general DOT typing
rules remove

recursive and
intersection types

only from the types
of variables, not

values.

following recipe:

1. Start with the tight typing rules.

2. Inline the subsumption rule (inline the subtyping rules into
the typing rules). This simplifies the construction, so we define
only one relation instead of two separate typing and subtyping
relations.

5.4 inversion of tight typing 37

Invertible variable
typing
Γ$¡ x : T

Γ $! x : T

Γ$¡ x : T
(Var-¡)

Γ$¡ x : ta : Tu Γ $# T ă: U

Γ$¡ x : ta : Uu
(Fld-ă:-Fld-¡)

Γ$¡ x : tA : T..Uu
Γ $# T1 ă: T Γ $# U ă: U1

Γ$¡ x :

A : T1..U1
(

(Typ-ă:-Typ-¡)

Γ$¡ x : T

Γ$¡ x : µ (x : T)
(Rec-I-¡)

Γ$¡ x : @(z : S) T Γ $# S1 ă: S
Γ, y : S1 $ T ă: T1

Γ$¡ x : @(z : S1) T1
(All-ă:-All-¡)

Γ$¡ x : T Γ$¡ x : U

Γ$¡ x : T^U
(And-I-¡)

Γ$¡ x : S Γ $! y : tA : S..Su

Γ$¡ x : y.A
(Sel-¡)

Γ$¡ x : T

Γ$¡ x : J
(Top-¡)

Invertible value typ-
ing
Γ$¡ v : T

Γ $! v : T

Γ$¡ v : T
(Val-¡v)

Γ$¡ v : @(z : S) T Γ $# S1 ă: S
Γ, y : S1 $ T ă: T1

Γ$¡ v : @(z : S1) T1
(All-ă:-All-¡v)

Γ$¡ v : T Γ$¡ v : U

Γ$¡ v : T^U
(And-I-¡v)

Γ$¡ v : S Γ $! y : tA : S..Su

Γ$¡ v : y.A
(Sel-¡v)

Γ$¡ v : T

Γ$¡ v : J
(Top-¡v)

Figure 5.3: Invert-
ible typing rules

3. Specialize the terms in all rules to variables and values, and
remove all rules that cannot apply to variables or values.

4. Remove all elimination rules.

5. Remove all rules that cannot apply in an inert context. Specifi-
cally, this means the Bot-# rule, because it has Γ $# x : K as a
premise, but this typing cannot be derived by any of the other
remaining rules starting from an inert type given to a variable
by the Var-# rule or to a value by the All-I-# and {}-I-# rules.

By applying this recipe to the tight typing rules, we arrive at the
invertible typing rules shown in Figure 5.3. We must now prove that
the typing relation induced by the invertible typing rules is equal to
the typing relation induced by the tight typing rules (restricted to inert

38 the simple dot proof

contexts and to variables and values). To do this, we need to first show
that invertible typing is closed under tight subtyping.

lemma 9 (Invertible ă: Closure). If Γ is inert, Γ$¡ x : T, and Γ $# T ă:
U then Γ$¡ t : U.

inert Γ Γ$¡ x : T

Γ $# T ă: U

Γ$¡ x : U
(Invertible ă: Closure) We can now prove that tight typing implies invertible typing:

theorem 10 ($# to $¡). If Γ is an inert context and Γ $# x : T , then
Γ$¡ x : T.

inert Γ Γ $# t : T

Γ$¡ t : T
($# to $¡)

Proof. The proof is by induction on the derivation of Γ $# x : T. Al-
though we said that induction on tight typing usually fails because the
rules have cycles, in this specific case, the induction is quite straight-
forward because invertible typing is part of the induction hypothesis.
The inductive cases for elimination rules, which would usually lead to
cycles in the induction, are all discharged using the invertible typing
in the induction hypothesis.

The soundness proof also has versions of the above two lemmas for
values (instead of variables) but we omit them here because they are
similar.

With this theorem, inversion proofs such as the proof of Lemma 8

(Sel-ă:-# Premise) become easy inductions on the invertible typing
rules:

inert Γ

Γ $# x : tA : S..Uu

Γ $! x : tA : T..Tu

(Sel-ă:-# Premise) Proof of Lemma 8.

inert Γ Γ $# x : tA : S..Uu
inert Γ Γ$¡ x : tA : S..Uu

Theorem 10 ($# to $¡)

inert Γ Γ $! x : tA : T..Tu Γ $# S ă: x.T ă: U
Induction on $##

We will see more lemmas that follow the same proof strategy in the
next section.

5.5 canonical forms lemmas

In general, soundness proofs require canonical-forms lemmas that
show that if a value has a given type, then it is a particular form
of value. Following our theme of a modular proof that deals with
one concept at a time, we do most of our work at the level of types,
following the same general recipe.

Because the DOT syntax enforces ANF, before a value can be used for
anything interesting, it must first be assigned to a variable through a let
expression. Suppose a variable x is bound to a value v by let x = v in t
and the variable x is used somewhere inside t. From the type U of the
use of x, we would like to deduce the form of the value v.

5.5 canonical forms lemmas 39

We proceed in two steps. First, from a type U such that Γ1 $ x : U,
where Γ1 is the typing context used to type the use of x occurring
inside t, we follow the proof recipe to deduce the type Γ1(x) given
to x by the typing context. The typing context Γ1 is constructed by
the premises of the Let typing rule, which extends an existing typing
context Γ to the typing context Γ1 by adding a binding (x : T). Here,
T is some type such that Γ $ v : T. Therefore, Γ1(x) is this T, and we
have, in general, that Γ $ v : Γ1(x) and thus also Γ1 $ v : Γ1(x).

For the second step, we know Γ1 $ v : T, where the type T has been
identified by the first step, and we wish to deduce the precise type of
v, and thence invert the precise value typing rules to obtain the form
of v.

The following lemmas instantiate these two steps, first for dependent
function types, and then for field member types.

lemma 11 (@ to Γ(x)).

inert Γ Γ $ z : @(x : T)U

Γ(z) = @(x : T1)U1 Γ $ T ă: T1 Γ, x : T $ U1 ă: U

lemma 12 (@ to λ).

inert Γ Γ $ v : @(x : T)U

v = λ(x : T1) t Γ $ T ă: T1 Γ, x : T $ t : U

lemma 13 (µ to Γ(x)).

inert Γ Γ $ x : ta : Tu

Γ(x) = µ
(

x : ¨¨¨ ^

a : T1
(

^ ¨¨¨
)

Γ $ T1 ă: T

lemma 14 (µ to ν).

inert Γ Γ $ v : µ (x : S) S = ¨¨¨ ^ ta : Tu ^ ¨¨¨

v = ν(x : S)(¨¨¨ ^ ta = tu ^ ¨¨¨) Γ $ t : T

The proofs of all of the lemmas follow the same general proof recipe
that we introduced for Lemma 13 in Section 5.1.

40 the simple dot proof

Proof of Lemma 12 (@ to λ).

inert Γ Γ $ v : @(x : T)U
inert Γ Γ $# v : @(x : T)U

Theorem 6 ($ to $#)

inert Γ Γ$¡ v : @(x : T)U
Theorem 10 ($# to $¡)

inert Γ Γ $! v : @(x : T1)U1 Γ $ T ă: T1

Γ, x : T1 $ U1 ă: U

Induction on $##

v = λ(x : T1) t Γ, x : T1 $ t : U1 Γ $ T ă: T1

Γ, x : T1 $ U1 ă: U

Inversion

of

All-I-!

v = λ(x : T1) t Γ, x : T $ t : U1 Γ $ T ă: T1

Γ, x : T $ U1 ă: U

Narrowing

v = λ(x : T1) t Γ, x : T $ t : U Γ $ T ă: T1
Sub

Proof of Lemma 11 (@ to Γ(x)).

inert Γ Γ $ x : @(y : T)U
inert Γ Γ $# x : @(y : T)U

Theorem 6 ($ to $#)

inert Γ Γ$¡ x : @(y : T)U
Theorem 10 ($# to $¡)

Γ $! x : @(y : T1)U1 Γ $ T ă: T1 Γ, y : T1 $ U1 ă: U
Induction

on $¡

Γ $! x : @(y : T1)U1 Γ $ T ă: T1 Γ, y : T $ U1 ă: U
Narrowing

Γ(x) = @(y : T1)U1 Γ $ T ă: T1 Γ, y : T $ U1 ă: U
Induction

on $!

Proof of Lemma 13 (µ to Γ(x)).

inert Γ Γ $ x : ta : Tu
inert Γ Γ $# x : ta : Tu

Theorem 6 ($ to $#)

inert Γ Γ$¡ x : ta : Tu
Theorem 10 ($# to $¡)

Γ $! x :

a : T1
(

Γ $ T1 ă: T
Induction on $##

Γ(x) = µ
(

x : ¨¨¨ ^

a : T1
(

^ ¨¨¨
)

Γ $ T1 ă: T
Induction on $!

Proof of Lemma 14 (µ to ν).

inert Γ Γ $ v : µ (x : S) S = ¨¨¨ ^ ta : Tu ^ ¨¨¨
inert Γ Γ $# v : µ (x : S) S = ¨¨¨ ^ ta : Tu ^ ¨¨¨

Theorem 6 ($ to $#)

inert Γ Γ$¡ v : µ (x : S) S = ¨¨¨ ^ ta : Tu ^ ¨¨¨
Theorem 10 ($# to $¡)

inert Γ Γ $! v : µ (x : S) S = ¨¨¨ ^ ta : Tu ^ ¨¨¨
Induction on $##

inert Γ v = ν(x : S)(¨¨¨ ^ ta = tu ^ ¨¨¨) Γ $ t : T
Inversion of {}-I-!

Since the return type of a dependent function type depends on the
parameter type, this proof and the proof of Lemma 11 (@ to Γ(x)) rely
on a standard narrowing property, which states that making a typing

5.6 progress , preservation, and soundness 41

context more precise by substituting one of the types by its subtype
preserves the typing and subtyping relations.

lemma 15 (Narrowing). Suppose Γ(x) = T and Γ[x : T1] $ T1 ă: T.
Then Γ $ t : U implies Γ[x : T1] $ t : U, and Γ $ S ă: U implies Γ[x : T1] $
S ă: U.

Γ, x : T $ t : U

Γ, x : T1 $ T1 ă: T

Γ, x : T1 $ t : U
(Narrowing)Narrowing is proved for DOT by Amin, Grütter, et al., (2016). The

proof is standard, with no issues specific to DOT, by induction on the
typing and subtyping rules.

Given the above lemmas we can infer the precise type of a variable
given its general type, and the shape of a value given the value’s type.
What we need to do now is to establish a connection between variables
and values so that we can prove the canonical-forms lemmas. The first
step is to define a correspondence relation between value and type
environments: since evaluation happens on pairs γ | t of stores and
terms we need to make sure that the typing environment in which we
type a term corresponds to the term’s runtime configuration γ.

definition 16 (Well-formedness). A store γ = (xi, vi) is well-formed
with respect to a typing context Γ = (xi, Ti), denoted γ : Γ, if Γ $ vi : Ti for
all i = 1, . . . , n.

∅ : ∅

γ : Γ Γ $ v : T

γ, x ÞÑ v : Γ, x : T
The following lemma states that any variable that has a type in the

environment maps to a value of the same type in the store.

lemma 17 (Corresponding Types). Suppose that a store γ is well-formed
with respect to an envrionment Γ, and that Γ assigns type T to a variable x.
Then there exists a value v that is assigned to x by the store γ, and v has the
same type T as x.

γ : Γ Γ(x) = T

γ(x) = v ^ Γ $ v : T
(Corresp. Types)

The final canonical-forms lemmas presented below immediately
follow from Lemma 17 and Lemma 11 to Lemma 14.

lemma 18 (Canonical Forms for Objects). Suppose that a store γ is
well-formed with respect to an inert environment Γ, and that Γ $ x : ta : Tu.
Then the store γ assigns the object ν(x : U) ¨ ¨ ¨ ^ ta = tu ^ . . . to x, where
t has type T.

γ : Γ inert Γ
Γ $ x : ta : Tu

γ(x) = ν(x) . . . ta = tu . . .
Γ $ t : T

(Can. Forms for ν)

lemma 19 (Canonical Forms for Functions). Suppose that a store
γ is well-formed with respect to an inert environment Γ, and that Γ $

x : @(x : T)U. Then the store γ assigns the object λ(x : T1) t to x, where
Γ, x : T $ t : U and Γ $ T ă: T1.

γ : Γ inert Γ
Γ $ x : @(x : T)U

γ(x) = λ(x : T1) t
Γ, x : T $ t : U

Γ $ T ă: T1

(Can. Forms for λ)

5.6 progress , preservation, and soundness

To express the final soundness theorems we need to introduce one
additional lemma, the notion of a well-formed store, and a definition
of normal forms.

The following lemma states that all well-typed values have an inert
precise type.

42 the simple dot proof

lemma 20 (Value Typing). If Γ $ v : T, then there exists an inert type T1

such that Γ $! v : T1 and Γ $ T1 ă: T.

Γ $ v : T

Γ $! v : T1

inert T1

Γ $ T1 ă: T
(Value Typing) Proof. The proof is by induction on the derivation of Γ $ v : T, and

is short because only three typing rules apply to values: All-I, {}-I,
and Sub. In the first two cases, the precise type of v coincides with the
general type. The subsumption case is handled by using the induction
hypothesis and transitivity of subtyping. Furthermore, the precise-
typing judgment for values and definition-typing rules ensure that
any precise type of a value is inert.

definition 21 (Normal Form). A term t is in normal form, denotedx Û v Û

t Û, if t is either a variable or a value.

With these results, we can prove the standard progress theorem that
every typable term is a normal form or reduces to some other term.

theorem 22 (Progress). Let γ be a store and Γ an inert typing environ-
ment such that γ : Γ. If Γ $ t : T then t is in normal form or there exists a
term t1 and a store γ1 such that γ | t ÞÝÑ γ1 | t1.

γ : Γ inert Γ

Γ $ t : T

γ | t ÞÝÑ γ1 | t1

_ t Û

(Progress)
Proof. We proceed by induction on the derivation of Γ $ t : T, in each
case finding a reduction rule that applies. The interesting cases are
All-E and {}-E.

In the premises of All-E, variable x has type @(z : S) T. Lemma 11

(@ to Γ(x)) tells us that Γ binds x to a compatible function type. γ : Γ
ensures that γ binds x to some value v, and that v has a compatible
function type. Finally, Lemma 12 (@ to λ) tells us the v is a lambda, so
the Apply reduction rule can be applied.

The {}-E case is similar, but using Lemma 13 (µ to Γ(x)) and
Lemma 14 (µ to ν) instead of Lemmas 11 and 12, respectively, and the
Project reduction rule instead of Apply.

We can now prove the standard preservation theorem.

theorem 23 (Preservation). Let γ be a store and Γ an inert typing
environment such that γ : Γ. If Γ $ t : T and γ | t ÞÝÑ γ1 | t1 then there
exists an inert context Γ1 such that γ1 : Γ1 and Γ1 $ u : T.

γ : Γ inert Γ

Γ $ t : T

γ | t ÞÝÑ γ1 | t1

Γ1 $ t1 : T

γ1 : Γ1 inert Γ1

(Preservation) Proof. The proof proceeds by induction on the typing derivation. The
interesting cases are All-E, Fld-E, and Let. In the first two cases we
apply Lemmas 11 to 14 to obtain values with the necessary types like
in the proof of Theorem 22 (Progress).

In the Let case, t = let x = u in u1, where Γ $ u : U and Γ, x : U $

u1 : T for some type U. We proceed by a case analysis on the shape of
u. Here, the interesting case is when u is a value v. Since Γ $ v : U,
by Lemma 20 (Value Typing), there exists an inert type U1 such that
Γ $! v : U1 and Γ $ U1 ă: U. We choose as our inert context Γ1 =

5.7 proof structure and extensions 43

Γ, x : U1. The term γ | let x = v in u1 reduces to γ, x ÞÑ v | u1, and
we have γ, x ÞÑ v : Γ, x : U1 as needed. Finally, we have to show that
Γ, x : U1 $ u1 : T, which follows Γ, x : U $ u1 : T and Γ $ U1 ă: U by
Lemma 15 (Narrowing).

Using progress and preservation it is easy to prove the final DOT
type soundness theorem.

definition 24 (Divergence). A term t diverges, denoted t ò, if there
exists an infinite reduction sequence

∅ | t ÞÝÑ γ1 | t1 ÞÝÑ . . . ÞÝÑ γn | tn ÞÝÑ . . .

theorem 25 (DOT Type Soundness). If $ t : T then either t diverges
(t ò) or t reduces to a normal form t1, i.e. ∅ | t ÞÝÑ˚ γ | t1, t1 Û, and
Γ $ t1 : T for some Γ such that γ : Γ.

$ t : T

(∅ | t ÞÝÑ˚ γ | t1

^ t1 Û) _ t ò

(DOT Soundness)

5.7 proof structure and extensions

This section summarizes the structure of the proof and discusses how
the proof is affected by changes and extensions of the DOT calculus.

5.7.1 Proof Structure

The dependencies between the main lemmas in the proof are sum-
marized in the diagram in Figure 5.4. The gray nodes and solid lines
denote the lemmas in the simple proof for DOT. The white boxes and
dotted lines correspond to changes needed to prove soundness of an
example extension of the calculus that will be described in Chapter 6.

The final progress and preservation theorems depend on the four
applications of the proof recipe to prove canonical forms for values
and variables of object and function type (written in the figure as @
to λ, µ to ν, @ to Γ(x), and µ to Γ(x)). Each application of the proof
recipe uses Theorem 6 ($ to $#) and Theorem 10 ($# to $¡) to convert
general typing to tight typing and then to invertible typing. Theorem 6

depends on Lemma 7 (Sel-ă:-# Replacement) and Lemma 8 (Sel-ă:-#
Premise). Theorem 10 depends on a subtyping closure helper lemma.
After using the theorems to obtain invertible typing, we invert the
invertible typing in each of the four cases (see “invertible to precise”
level in the dependency graph) to obtain either the type Γ(x) assigned
to a variable x by the typing context Γ or the form of the value v
with the given type. The four light large boxes in the figure indicate
the canonical-forms lemmas, and the three phases of the proof recipe
(conversion of general to tight typing, tight to invertible typing, and
inversion of invertible typing).

44 the simple dot proof

progress

preservation

canonical forms

general to tight

tight to invertible

invertible to precise

$ to $#

Sel
replacement

Sel
premise

Can. forms λ Can. forms ν

Corresp. types

µ to ν@ to Γ(x)@ to λ µ to Γ(x)

$# to $¡v

$¡v
subtyping

closure

$# to $¡

$¡
subtyping

closure

$¡v to $! λ $¡v to $! ν$¡ to $! @ $¡ to $! µ

T to v T to Γ(x)

Can. forms v

$¡v to $! v $¡ to $! T

Figure 5.4: Dependencies between main lemmas in the proof. Gray nodes
denote existing lemmas. White nodes denote lemmas that would
need to be added if DOT were extended with a new type T and a
new value v.

6
M O D I F I C AT I O N S O F T H E C A L C U L U S

The most common expected extensions of a calculus are the addition
of new forms of values and terms, of new forms of types and typing
rules, and changes to the evaluation rules. Most extensions will change
multiple aspects (e.g., add a new form of value and an associated type),
but we discuss each change individually. In Part II, we will present
a specific example of an extension that makes all of these kinds of
changes.

The only part of our proof that deals with values are the two pairs
of canonical forms lemmas in Section 5.5 and the final progress and
preservation theorems. A new form of value will require an additional
pair of canonical-forms lemmas. The lemma can follow the general
recipe: it will apply Theorem 6 ($ to $#) and Theorem 10 ($# to $¡). It
does not need to reason with the general DOT typing rules, but only
to invert the invertible typing obtained from Theorem 10. This last
inversion step should be easy, because invertible typing is designed to
be easily invertible. The addition of a new form of value is illustrated
in the dependence graph by the two white nodes on the left side of
the graph.

The only part of the proof that deals with terms in general are the
final progress and preservation theorems. The only non-trivial change
required when adding a new term is that if new reduction rules are
added for the new term to the operational semantics, cases for the new
reduction rules need to be added to the progress and preservation
theorems. This is illustrated in the dependence graph by the dotted
outlines of the nodes representing those two theorems.

Adding a new form of type is a more significant change. Given gen-
eral typing rules for the new type, we must incorporate the changes
into the tight, invertible, and precise typing rules. Tight typing differs
from general typing only in its handling of abstract type members and
type projections, so changes unrelated to those features can be incor-
porated directly into tight typing. A change involving abstract type
members or type projections requires corresponding modifications to
tight typing. Property 5 (Tight Typing Guarantee) gives a modular
specification to guide the design of such modifications. Specifically, we
know that as long as the modified tight typing rules satisfy the prop-
erty and we can prove Theorem 6 ($ to $#), then the proof recipe and
the rest of the whole soundness proof will continue to hold without
requiring non-trivial changes. To incorporate the modifications into
invertible and precise typing, it suffices to follow the general recipe
outlined in Section 5.4. Specifically, we must classify the new tight

45

46 modifications of the calculus

typing rules as either introducing or eliminating a syntactic construct,
and then add them to either invertible or precise typing, respectively.
Adding new typing rules requires adding the corresponding cases to
the proofs of Theorem 6 ($ to $#) and Theorem 10 ($# to $¡). In the
proof of Theorem 6 ($ to $#), all cases except ă:-Sel and Sel-ă: are
so simple that Coq discharges them automatically, so we do not add a
dotted outline to the node to indicate new cases in the proof.

A change to the evaluation rules of the calculus does not affect
any of the reasoning in Chapter 5 since this chapter is independent
of any particular evaluation semantics. Only the final progress and
preservation theorems are affected.

The next part of this thesis presents a specific extension of DOT by
showing how to add mutable references to the calculus.

7
T H E S T R U G G L E F O R “ G O O D ” B O U N D S

A recurring theme in previous work on DOT has been the struggle
to enforce “good” bounds. A type member declaration tA : S..Uu is
considered to have “good” bounds if S ă: U. If all type members could
be forced to maintain “good” bounds, it would prevent an object of
type µ (x : tA : S..Uu) from introducing a new, possibly non-sensical
subtyping relationship S ă: U from S ă: x.A ă: U and transitivity.
Many of the challenges along the way to defining a sound DOT
calculus arose from the negative interaction between “good” bounds
and other properties, such as narrowing and transitivity. For example,
although both tA : K..Ku and tA : J..Ju have “good” bounds, the
narrowed type tA : K..Ku^ tA : J..Ju causes trouble: in the function

λ(x : tA : K..Ku^ tA : J..Ju) t

the body t is type-checked in a typing context in which J ă: x.A ă: K.
Not only do “good” bounds interact poorly with other desirable

properties, but even defining precisely what “good” bounds are is
surprisingly elusive. Informally, bounds are “good” if S ă: U. But
in what typing context should this subtyping relationship hold? In
deciding whether the type µ (x : tA : S..Uu) should be allowable, it
seems appropriate to respect the recursion implied by µ and use a
context that includes x; that is, to require that Γ, x : tA : S..Uu $ S ă:
U. But this statement is always true regardless of the types S and U
because it is self-justifying:

Γ, x : tA : S..Uu $ S ă: x.A ă: U.

If we decide instead to exclude the self-reference x from the context
used to decide whether S ă: U, we exclude many desirable types from
the definition of “good” bounds. For example, we consider “bad” the
type

µ (x : tA : K..Ju^ tB : x.A..x.Cu ^ tC : K..Ju)

that innocently defines three type members with A ă: B ă: C, because
x.A cannot be a subtype of x.C without x in the context. We also
consider “bad” the following type that defines two type members
A ă: B constrained to be function types:

µ (x : tA : K..@(y : K)Ju^ tB : x.A..@(y : K)Ju) .

Again, x.A cannot be a subtype of @(y : K)J without x in the context.
Finally, such a definition of “good” bounds restricts the applicability

47

48 the struggle for “good” bounds

of type aliases: the following type defines A and B as aliases for J
and K, respectively, but cannot use these aliases in the bounds of C
because x.B��ă:x.A in a context without x:

µ (x : tA : J..Ju^ tB : K..Ku^ tC : x.B..x.Au)

Although it would be possible to come up with some definition of
“good” bounds that handles these specific examples, the definition
of what was intended to be an obvious and intuitive concept would
become very complicated, and other more sophisticated counterex-
amples would probably continue to exist. Thus, it appears that trying
to enforce “good” bounds, and even trying to define what “good”
bounds are, is a dead end.

By contrast, inert types obey a purely syntactic property that is
easily defined and checked, without requiring a subtyping judgment
in some typing context that would have to be specified. The prop-
erty provided by an inert typing context can be stated precisely and
formally (Property 4 (Inert Context Guarantee)).

8
R E L AT E D W O R K

The work presented in this part of the thesis is based on a previously
published publication of the simple DOT soundness proof (Rapoport,
Kabir, et al., 2017).

8.1 dot soundness proofs

The work most closely related to ours is Amin, Grütter, et al., (2016),
which defines and proves sound the variant of the DOT calculus for
which we have developed our alternative soundness proof. That work
also defines tight typing, though it does not use it as pervasively as
our proof does.

A central notion of that proof is store correspondence, a relationship
between typing contexts and stores of runtime values. A typing context
Γ corresponds to a store s if for every variable x, Γ $! s(x) : Γ(x).
Typing and subtyping in a context Γ that corresponds to some store s
have similar predictable behaviour as they do in an inert context. Part
of the proof consists of lemmas that relate internal details of values
in stores with internal details of types in corresponding contexts. By
contrast, the property of inert contexts is independent of values, so
our proof does not depend on such lemmas.

Another central notion is “possible types”: if a typing context Γ
corresponds to some store s, and s assigns to variable x the value v,
then the possible types of the triple (Γ, x, v) include all types T such
that Γ $ x : T. Possible types serve a similar purpose as our invertible
typing rules, to facilitate induction proofs. Unlike invertible typing,
possible types depend on the runtime value v of x. The possible types
lemma relates general typing in a context with a corresponding store
to possible types. It serves a similar purpose as our Theorem 10 ($#

to $¡) (which relates tight to invertible typing), but its proof is more
complicated, because it depends on sublemmas that relate types to
values in the context corresponding to the store, and on general typing.

Amin, Grütter, et al., (2016) also prove a similar result as Theorem 6

($ to $#): the general to tight lemma states that in a context Γ for
which there exists some corresponding runtime store s, general typing
implies tight typing. We prove Theorem 10 ($# to $¡) first, which
makes proving Theorem 6 ($ to $#) easy. The proof of Amin, Grütter,
et al., (2016) does the analogous steps in the opposite order: it proves
the general to tight lemma first, and the possible types lemma after-
wards, using the general to tight lemma in its proof. The proof of the
general to tight lemma is thus complicated because it cannot make use

49

50 related work

of possible types. Another complication is that the proof of the general
to tight lemma, like the proof of the possible types lemma, depends
on sublemmas that relate types to values in the context corresponding
to the store.

Rompf and Amin, (2016b) define a variant of the DOT calculus with
additional features, most significantly subtyping between recursive
types. This adds significant complexity to the proof: Lemmas 6 to 11

are needed only because of this feature. However, subtyping between
Scala’s types can be already modelled by subtyping between type
members in DOT. Scala has nominal subtyping between classes and
traits that are explicitly declared to be subtypes using an extends

clause. A class or trait declaration in Scala corresponds in DOT to a
type member definition in some package x that gives a label A to a
recursive type. The recursive type is used to define the members of the
class, and the recursion is necessary so that members of the class can
refer to the object of the class this. A subclass B of A can be declared
as the type member definition B = x.A^ µ (z : x.A^ T), where the
type T describes the additional members that B adds to A. Then x.B
is a subtype of x.A, and given a variable of type x.B, it is possible to
access both members that were declared in A and members that were
added in B. This DOT encoding models the Scala subtyping between
classes A and B without requiring subtyping between recursive types,
and it can be expressed in the DOT of Amin, Grütter, et al., (2016).

Unlike Amin, Grütter, et al., (2016) and our proof, the proof of
Rompf and Amin, (2016b) does not use tight typing, the typing rela-
tion that neutralizes the two type rules that enable a DOT program
to introduce non-sensical subtyping relationships in a custom type
system. Instead, the proof uses “precise subtyping”, a restriction of
general subtyping to relationships whose derivation does not end in
the transitivity rule.

8.2 history of scala calculi

Odersky, Cremet, et al., (2003) introduce νObj, a calculus to formalize
Scala’s path-dependent types. νObj includes abstract type members,
classes, compound (non-commutative) mixin composition, and single-
ton types, among other features. However, the calculus lacks several
essential Scala features, such as the ability to define custom lower
bounds for type members, and has no top and bottom types. Ad-
ditionally, νObj, unlike Scala, has classes as first-class values. νObj
comes with a type soundness proof. The paper also shows that type
checking for νObj is undecidable. Cremet et al., (2006) propose Feather-
weight Scala, which is similar to νObj, but without classes as first-class
values. The paper shows that type inference in Featherweight Scala
is decidable, but does not prove type safety. Scalina, introduced by

8.3 other related calculi 51

Moors, Piessens, and Odersky, (2008), presents a formalization for
higher-kinded types in Scala, but also without a soundness proof.

Amin, Moors, and Odersky, (2012) present the first DOT. DOT has
fewer syntax-level features than νObj: there are no classes, mixins, or
inheritance. However, some of the previously missing crucial Scala
features are now present. The calculus allows refinement of abstract
type members through commutative intersections, combining nom-
inal with structural typing. Type members can have custom lower
and upper bounds, and the type system contains a bottom and top
type. The paper comes without a type safety proof, but it explains
the challenges and provides counterexamples to preservation. The
paper shows how the environment narrowing property makes proving
soundness complicated: replacing a type in the context with a more
precise version can impose a new subtyping relationship, which could
disagree with the existing ones.

Amin, Rompf, and Odersky, (2014) have the first mechanized sound-
ness proof for µDOT, a simplified calculus that excludes refinements,
intersections, and the bottom and top types, and uses big-step se-
mantics. The paper proposes the idea to circumvent bad bounds by
reasoning about types that correspond to runtime values.

Amin, Grütter, et al., (2016) and Rompf and Amin, (2016b) build on
this store correspondence idea, to establish the first mechanized sound-
ness proofs for DOT calculi with support for type intersection and
refinement, and top and bottom types. The two calculi and soundness
proofs were discussed in the previous section.

8.3 other related calculi

Path-dependent types were first introduced in the context of family
polymorphism by Ernst, (2001). In family polymorphism, groups of
types can form families that correspond to a specific object. Two types
from the same class are considered incompatible if the types are
associated with different runtime objects.

Family polymorphism is the foundation of virtual classes, which
were introduced in the Beta programming language (Madsen and
Møller-Pedersen, 1989) and further developed in gbeta (Ernst, 1999).
Virtual classes are nested classes that can be extended or redefined
(overridden), and are dynamically resolved through late binding. Fam-
ily polymorphism allows for a fine-grained distinction between classes
that have the same static path, yet belong to different runtime objects
and can thus have different implementations.

Virtual classes were first formalized and proved type safe in the
vc calculus (Ernst, Ostermann, and Cook, 2006). vc is a class-based,
nominally-typed calculus with a big-step semantics. To create path-
based types, the keyword out is used to refer to an enclosing object.
With its support for classes, inheritance, and mutation of variables,

52 related work

vc is more complex than DOT, whose purpose is to serve as a simple
core calculus for Scala. Additionally, Scala has no support for virtual
classes: the language does not allow class overriding, and its classes
are resolved statically at compile time.

Tribe by Clarke et al., (2007) is a simpler, more general calculus
inspired by vc. One of the main distinctions to vc is that variables,
and not just enclosing objects (out), can be used as paths for path-
dependent types. This makes the calculus more general, as it can
express subtyping relationships between classes with arbitrary abso-
lute paths. Tribe comes with a type-safety proof, which is based on a
small-step semantics. Expanding paths to allow variables brings Tribe
closer to DOT. However, the complexity of the type system, resulting
from modelling classes and inheritance, and the modelling of virtual
classes, which are not present in Scala, leaves DOT more suitable as a
core calculus for Scala.

Amin and Rompf, (2017) offer a survey of mechanized soundness
proofs for big-step, DOT-like calculi using definitional interpreters.
The paper explores a family of calculi ranging from System F to
System Dă:ą and general proof techniques that can be applied to this
entire family. The paper discusses similarities and differences between
System Dă:ą and DOT.

8.4 type checking decidability

Odersky, Cremet, et al., (2003) proved that there exists no algorithm
that can decide if a typing judgment in the νObj calculus is well-typed.
To carry out the proof, νObj includes first-class classes, which are not
present in Scala. The proof works via a reduction from System Fă:,
which was shown to be undecidable (Pierce, 1992a). To come up with
a decidable type system for Scala, Cremet et al., (2006) developed
the Featherweight Scala calculus and proved its type system decidable;
however, the formalization was not proved sound and excluded unique
lower and upper bounds for the subtyping lattice and lower bounds
for type members. By formalizing a large subset of Scala, νObj and
Featherweight Scala significantly differ from DOT-like calculi whose
purpose is to serve as small extensible core calculi.

The DOT calculus is widely conjectured to have undecidable type-
checking because it includes the features of Fă:, for which typecheck-
ing is undecidable (Pierce, 1992b). Rompf and Amin, (2016b) give a
mapping from Fă: to Dă:, a simpler calculus than DOT, and prove
that if the Fă: term is typeable then so is the Dă: term. However, the
mapping does not preserve typeability in the only-if direction which
is required to prove undecidability of typing: Hu and Lhoták, (2019)
present an example of a typeble Dă: term whose translation to Fă:

does not have a type. Hu and Lhoták then present an alternative

8.5 syntactic vs . semantic proofs 53

mapping between Fă: and Dă: and prove undecidability of Dă: in
Agda.

To investigate what it would take to make typechecking a DOT-like
calculus algorithmic, Nieto, (2017) presents a decidable type-checking
algorithm for a subset of Dă: with restricted subtyping rules. The
paper discusses how bad bounds complicate algorithmic typing of
DOT-like calculi, and how the Scala compiler avoids this issue by
dropping subtyping transitivity altogether. Hu and Lhoták, (2019)
define kernel Dă:, a calculus equivalent to Nieto’s subset of Dă: and
formalize its decidability proof in Coq. The paper also presents a
mechanized proof for a version of kernel Dă: that allows comparing
the parameter types of function types for equality, adding significant
expressivity to the calculus.

8.5 syntactic vs . semantic proofs

The DOT papers that establish type safety based on a small-step
operational semantics, including this work, use the syntactic approach
to proving type safety of Wright and Felleisen, (1994).3 In a syntactic 3 Big-step DOT

proofs also use a
syntactic approach
but based on
definitional inter-
preters (Reynolds,
1998).

proof, we develop a set of inductive type rules and prove progress
and preservation theorems for our operational semantics. Progress says
that any well-typed, closed term is either a value or can take a step.
Preservation says that reduction preserves the types of terms. Together,
progress and preservation imply type safety: well-typed programs do
not get stuck.

The syntax-based approach treats types as syntactic constructs with-
out directly expressing their meaning. By contrast, semantic approaches
to type soundness are based on establishing a set-theoretic semantics
for types, where types are explicitly defined in terms of the values
they represent (Appel and Felty, 2000). Instead of using type rules
as axioms, a semantic proof allows us to prove type rules as derived
lemmas. This leads to a system in which we only need to trust the
operational semantics and type definitions, instead of relying on the
meaningfulness of the type system, whose definition is often larger
and more difficult to reason about. In addition, semantic proofs tend
to be more reusable and are easier to scale (Bell et al., 2008). Unfor-
tunately, encoding types as sets of values proves often difficult and
involves more sophisticated mathematics.

Creating a semantic type-soundness proof for DOT remains an
open problem. Wang and Rompf, (2017) propose a proof of strong
normalization using for Dă:, a restricted version of DOT. The paper
presents the first semantic encoding of a subset of DOT’s types, and
the normalization proof is a semantic one that is based on logical
relations. At the moment, Paolo Giarrusso is actively working on a
semantic type soundness proof for the full DOT calculus in Iris that is
based on logical relations (Giarrusso et al., 2019).

9
S U M M A RY

DOT (Amin, Grütter, et al., 2016) is the result of a long effort to develop
a core calculus for Scala. Now that there is a sound version of the
calculus, we would like to extend it with other Scala features, such
as classes, mixin composition, side effects, implicit parameters, etc.
DOT can be also used as a platform for developing new language
features and for fixing Scala’s soundness issues (Amin and Tate, 2016).
But these applications are hindered by the complexity of the existing
soundness proofs, which interleave reasoning about variables, types,
and runtime values, and their complex interactions.

We have presented a simplified soundness proof for the DOT calcu-
lus, formalized in Coq. The proof separates the reasoning about types,
typing contexts, and values from each other. The proof depends on the
insight of inert typing contexts, a syntactic characterization of contexts
that rule out any non-sensical subtyping that could be introduced
by abstract type members. The central lemmas of the proof follow a
general proof recipe for deducing properties of terms from their types
in full DOT while reasoning only in a restricted, intuitive environment
free from the paradoxes caused by abstract type members. The same
recipe can be followed to prove similar lemmas when the calculus is
modified or extended. The result is a simple, modular proof that is
well suited for developing extensions.

55

Part II

C A S E S T U D Y: M U TA B L E D O T

10
I N T R O D U C T I O N

DOT models the key components of the Scala type system such as
type members, path-dependent types, and subtyping. However, the
calculus is still lacking some fundamental Scala features, one of which
is mutation.

Without mutation, it is difficult to model mutable variables and
fields, or to reason about side effects in general. Interestingly, mu-
tation is even necessary to model a sound class initialization order
for immutable fields, which are mutated once when they are initial-
ized (Kabir and Lhoták, 2018). Formalizing Scala initialization order
would require reasoning about overwriting of class members that were
initialized with null, which is not directly possible in DOT.

This chapter presents the Mutable DOT calculus, an extension to
DOT with typed mutable references. To that end, we augment the
calculus with a mutable heap and the possibility to create, update, and
dereference mutable memory cells, or locations. To model mutable
variables (vars), one can create a heap location and store immutable
variables (vals) in it (immutable variables are already modelled in
DOT). For example, a Scala object

object O {
val x = 1
var y = 2

}

can be represented in mutable-DOT pseudocode as follows:

new {this: {x: Int} ^ {y: Ref Int}}
{x = 1} ^ {y = ref 2 Int}

An unusual characteristic of our heap implementation is that it maps
locations to variables instead of values. This design choice is induced
by DOT’s type system, which disallows subtyping between recursive
types. We show how, as a result, storing values on the heap would
significantly limit the expressiveness of our calculus, and explain the
correctness of storing variables on the heap.

contributions

This part of the thesis presents the following contributions:

– an operational semantics and type system for Mutable DOT, an see Chapter 11

extension of the DOT calculus with mutable references;

– a mechanized type safety proof in Coq, in the form of an extension Coq proof:
https://git.io/fjlq6,
see Chapter 12

of the original DOT proof;

59

https://git.io/fjlq6

60 introduction

– a discussion of the Mutable DOT design choices and examples.see Chapter 13

11
T H E M U TA B L E D O T C A L C U L U S

In this chapter we present the Mutable DOT calculus as an extension
of DOT.

t, u :=

x

v

x.a

x y

let x = t in u

ref x T

!x

x := y

v :=

ν(x : T)d

λ(x : T) t

l

d :=

ta = tu

tA = Tu

d^ d1

S, T, U :=

J

K

ta : Tu

tA : S..Tu

x.A

S^ T

µ (x : T)
@(x : S) T

Ref T

Figure 11.1: Ab-
stract syntax of
Mutable DOT (cf.
DOT syntax in
Figure 2.1)

11.1 mutable dot abstract syntax

To support mutation, we augment the DOT syntax with references that
point to mutable memory cells, or locations, as shown in Figure 11.1.

Locations are a new kind of value that is added to the syntax, and
are denoted as l. The syntax comes with three new terms to support
the following reference operations:

– ref x T creates a new reference of type T in the heap and initial-
izes it with the variable x. Section 13.3 explains why reference
expressions need to contain a declared type T.

– !x reads the contents of a reference x.

– x := y updates the contents of a reference x with the variable y.

The operations that create, read, and update references operate on
variables, not arbitrary terms, in order to preserve ANF.

Newly-created references become locations, or memory addresses,
denoted as l. Locations are stored in the heap, denoted as σ.

The heap is a map from locations to variables. This differs from the
common definition of a heap which maps locations to values. We
discuss the motivation for this design choice in Section 13.1. In order
to preserve the commonly expected intuitive behaviour of a heap, we
must be sure that while a variable is in the heap, it does not go out of
scope or change its value. We show this in Section 13.2.

Updating a heap σ that contains a mapping l ÞÑ x with a new
mapping l ÞÑ y overwrites x with y:

(σ[l Ñ x])(l1) =

$

&

%

x if l = l1

σ(l1) otherwise.

Locations are typed with the reference type Ref T. The underlying
type T indicates that the location stores variables of type T.

61

62 the mutable dot calculus

γ(x) = ν(x : T) . . . ta = tu . . .

σ | γ | x.a ÞÝÑ σ | γ | t
(Project)

γ(x) = λ(z : T) t

σ | γ | x y ÞÝÑ σ | γ | t [y/z]
(Apply)

σ | γ | let x = y in t ÞÝÑ σ | γ | t [y/x] (Let-Var)

σ | γ | let x = v in t ÞÝÑ σ | γ, x ÞÑ v | t (Let-Value)

σ | γ | t ÞÝÑ σ1 | γ1 | t1

σ | γ | let x = t in u ÞÝÑ σ1 | γ1 | let x = t1 in u
(Ctx)

l R dom(σ)

σ | γ | ref x T ÞÝÑ σ[l ÞÑ x] | γ | l
(Ref)

γ(x) = l

σ | γ | x := y ÞÝÑ σ[l ÞÑ x] | γ | y
(Heap)

γ(x) = l σ(l) = y

σ | γ |!x ÞÝÑ σ | γ | y
(Deref)

Figure 11.2: Mu-
table DOT opera-
tional semantics

To write concise Mutable DOT programs, we extend the abbrevia-
tions from Section 2.4 with the following rules:

ref t T ” let x = t in ref x T

t := u ” let x = t in let y = u in x := y

!t ” let x = t in !x

t; u ” let x = t in u

11.2 mutable dot operational semantics

Since the meaning of a Mutable DOT term depends on the heap
contents, we represent a program state as a triple σ | γ | t, denotingthe heap σ maps

locations to variables:

σ := ∅
| σ[l ÞÑ x]

a term t that can point to memory contents in the heap σ and whose
variables are stored in the store γ.

The new reduction semantics is shown in Figure 11.2:

– A newly created reference ref x T reduces to a fresh location with
an updated heap that maps l to x (Ref).

– Dereferencing a variable using !x is possible if x is bound to a
location l by a let expression. If so, !x reduces to σ(l), the variable
stored at location l (Deref).

11.3 mutable dot typing rules 63

– Similarly, if x is bound to l by a let, then the assignment operation
x := y updates the heap at location l with the variable y (Heap).

Programs written in the Mutable DOT calculus generally do not
contain explicit location values in the original program text. Locations
are included as values in the Mutable DOT syntax only because terms
such as ref x T will evaluate to fresh locations during reduction.

The remaining rules are the DOT evaluation rules, with the only
change that they pass along a heap.

11.3 mutable dot typing rules

The Mutable DOT typing rules, depicted in Figure 11.3, depend on a
heap typing Σ in addition to a type environment Γ. A heap typing maps
locations to the types of the variables that they store. The heap typing
spares us the need to re-typecheck locations and allows to typecheck
cyclic references (Pierce, 2002).

As an example, the following Mutable DOT program cannot be
easily typechecked without an explicit heap typing (using only the
runtime heap and the type environment):

p =

let id = λ(x : J) x in
let r = ref id (J Ñ J) in
let id1 = λ(x : J) (!r) x in
r := id1

Starting with an empty heap, after two reduction steps we get

∅ | p ÞÝÑ˚

l Ñ id1
(

| p1,

where

p1 =
let id = λ(x : J) x in
let r = l in
let id1 = λ(x : J) (!r) x in

id1

We would see by looking into the heap that to typecheck the location
l, we needed to typecheck id1. id1 depends on r, which in turn refers to
the location l, creating a cyclic dependency.

We therefore augment our typing rules with a heap typing, allowing
us to typecheck each location once and for all, at the time of a reference
creation. In the example, we would know that l is mapped to (J Ñ J)

from the let-binding of r and remember this typing in Σ. To express
that a term t has type T under the type environment Γ and heap
typing Σ, we write Γ, Σ $ t : T.

64 the mutable dot calculus

Tight term typing
Γ, Σ $ t : T

Γ(x) = T

Γ, Σ $ x : T
(Var)

Σ(l) = T

Γ, Σ $ l : Ref T
(Loc)

Γ, x : T, Σ $ t : U x R fv(T)

Γ, Σ $ λ(x : T) t : @(x : T)U
(All-I)

Γ, Σ $ x : @(z : S) T Γ, Σ $ y : S

Γ, Σ $ x y : T [y/z]
(All-E)

Γ, x : T, Σ $ d : T

Γ, Σ $ ν(x : T)d : µ (x : T)
({}-I)

Γ, Σ $ x : ta : Tu

Γ, Σ $ x.a : T
({}-E)

Γ, Σ $ t : T
Γ, x : T, Σ $ u : U x R fv(U)

Γ, Σ $ let x = t in u : U
(Let)

Γ, Σ $ x : T

Γ, Σ $ x : µ (x : T)
(Rec-I)

Γ, Σ $ x : µ (x : T)

Γ, Σ $ x : T
(Rec-E)

Γ, Σ $ x : T Γ, Σ $ x : U

Γ, Σ $ x : T^U
(&-I)

Γ, Σ $ t : T Γ, Σ $ T ă: U

Γ, Σ $ t : U
(Sub)

Γ, Σ $ x : T

Γ, Σ $ ref x T : Ref T
(Ref-I)

Γ, Σ $ x : Ref T

Γ, Σ $!x : T
(Ref-E)

Γ, Σ $ x : Ref T Γ, Σ $ y : T

Γ, Σ $ x := y : T
(Asgn)

Definition typing
Γ, Σ $ d : T

Γ, Σ $ t : T

Γ, Σ $ ta = tu : ta : Tu
(Fld-I)

Γ, Σ $ tA = Tu : tA : T..Tu (Typ-I)

Γ, Σ $ d1 : T1 Γ, Σ $ d1 : T2

dom(d1), dom(d2) disjoint

Γ, Σ $ d1 ^ d2 : T1 ^ T2
(AndDef-I)

Figure 11.3: Mu-
table DOT typing
rules

11.4 subtyping rules 65

The typing rules for Mutable DOT are shown in Figure 11.3. The
DOT rules are intact except that all typing derivations carry a heap
typing. The new rules related to mutable references are as follows:

– We typecheck locations by looking them up in the heap typing.
If, according to Σ, a location l stores a variable of type T, then l
has type Ref T (Loc).

– A newly created reference ref x T can be initialized with the
variable x if x has type T. In particular, if x’s precise type U is a
subtype of T, then x has type T by Sub, so we can still create a
ref x T (Ref-I).

– Conversely, dereferencing a variable of a reference type Ref T
yields the type T (Ref-E).

– Finally, if x is a reference of type Ref T, we are allowed to store
a variable y into it if y has type T. To avoid the need to add a
Unit type to the type system, we define an assignment x := y to
reduce to y, so the type of the assignment is T (Asgn).

11.4 subtyping rules

The subtyping rules of Mutable DOT include an added heap typing,
and a subtyping rule for references. The rules are shown in Figure 11.4.

Subtyping between reference types is invariant: usually, Ref T ă:
Ref U if and only if T = U. Invariance is required because refer-
ence types need to be (i) covariant for reading, or dereferencing, and
(ii) contravariant for writing, or assignment.

However, in DOT, co- and contra-variance between types does not
imply type equality: the calculus contains examples of types that are
not equal, yet are equivalent with respect to subtyping. For example,
for any types T and U, T^U ă: U ^ T ă: T^U. Yet, T^U ‰ U ^ T.
Therefore, subtyping between reference types requires both covariance
and contravariance:

Γ, Σ $ T ă: U Γ, Σ $ U ă: T

Γ, Σ $ Ref T ă: Ref U
(Ref-Sub)

66 the mutable dot calculus

Γ, Σ $ T ă: J (Top)

Γ, Σ $ K ă: T (Bot)

Γ, Σ $ T ă: T (Refl)

Γ, Σ $ S ă: T Γ, Σ $ T ă: U

Γ, Σ $ S ă: U
(Trans)

Γ, Σ $ T^U ă: T (And1-ă:)

Γ, Σ $ T^U ă: U (And2-ă:)

Γ, Σ $ S ă: T Γ, Σ $ S ă: U

Γ, Σ $ S ă: T^U
(ă:-And)

Γ, Σ $ x : tA : S..Tu

Γ, Σ $ S ă: x.A
(ă:-Sel)

Γ, Σ $ x : tA : S..Tu

Γ, Σ $ x.A ă: T
(Sel-ă:)

Γ, Σ $ S ă: T Γ, Σ $ S ă: U

Γ, Σ $ S ă: T^U
(ă:-And)

Γ, Σ $ T ă: U

Γ, Σ $ ta : Tu ă: ta : Uu
(Fld-ă:-Fld)

Γ, Σ $ S2 ă: S1

Γ, Σ $ T1 ă: T2

Γ, Σ $ tA : S1..T1u ă: tA : S2..T2u

(Typ-ă:-Typ)

Γ, Σ $ S2 ă: S1

Γ, x : S2, Σ $ T1 ă: T2

Γ, Σ $ @(x : S1) T1 ă: @(x : S2) T2
(All-ă:-All)

Γ $ T ă: U Γ $ U ă: T

Γ $ Ref T ă: Ref U
(Ref-Sub)

Figure 11.4: Muta-
ble DOT subtyping
rules

12
T Y P E S A F E T Y

In this section, we outline the soundness proof of Mutable DOT as an
extension of the simple DOT soundness proof presented in Part I.

The type-safety proof of Mutable DOT involved adding the follow-
ing definitions to the proof recipe (see Section 5.1):

1. a new case to the definition of inert types: any reference type cf. inert types in
Definition 2Ref T is inert;

2. tight typing extends the original tight typing definition with the cf. tight typing in
Figure 5.1new typing rules of Mutable DOT (exact versions of Ref-I, Ref-E,

Loc, Asgn, and Ref-Sub):

Γ, Σ $# x : T

Γ, Σ $# ref x T : Ref T
(Ref-I-#)

Σ(x) = T

Γ, Σ $# l : Ref T
(Loc-#)

Γ, Σ $# T ă: U Γ $# U ă: T

Γ, Σ $# Ref T ă: Ref U
(Ref-Sub-#)

Γ, Σ $# x : Ref T

Γ, Σ $# !x : T
(Ref-E-#)

Γ, Σ $# x : Ref T Γ, Σ $# y : T

Γ, Σ $# x := y : T
(Asgn-#)

3. invertible typing extends the invertible rules with an additional cf. invertible typing
in Figure 5.3case that inlines the Ref-Sub subtyping rule:

Γ, Σ $¡ x : Ref T Γ $# T ă: U Γ $# U ă: T

Γ, Σ $¡ x : Ref U
(Ref-¡)

4. precise typing extends the precise value-typing rules with a new cf. precise typing in
Figure 5.2case for locations:

Σ(x) = T

Γ, Σ $! l : Ref T
(Loc-!)

Since the typing relation depends on a heap typing, the well-formedness cf. well-foremedness
in Definition 16relation also needs to include Σ.

definition 26 (Well-formed Environments). A store γ = (xi, vi) is
well-formed with respect to a type environment Γ = (xi, Ti) and heap typing Σ ,
written γ : Γ, Σ , if for each i, Γ, Σ $! vi : T.

67

68 type safety

Additionally, we need to define well-formedness for heaps with
respect to heap typings:

definition 27 (Well-Typed Heap). A heap σ = li ÞÑ xi is well-typed
with respect to an environment Γ and heap typing Σ = li ÞÑ Ti, written
Γ, Σ $ σ, if for each i, Γ, Σ $ xi : Ti.

We can now present the central lemmas required to prove the
Mutable DOT soundness theorems.

The helper lemmas for canonical forms (Lemma 11 (@ to Γ(x)),
Lemma 12 (@ to λ), Lemma 13 (µ to Γ(x)), Lemma 14 (µ to ν), and
Lemma 17 (Corresp. Types)) are left unchanged. However, we need
two additional lemmas for variables and values that have reference
types.

lemma 28 (Ref T to Γ(x)).

inert Γ Γ, Σ $ x : Ref T

Γ(x) = Ref U Γ, Σ $ Ref U ă: Ref T Γ, Σ $ Ref T ă: Ref U

lemma 29 (Ref T to l).

inert Γ Γ, Σ $ x : Ref T

Γ(x) = Ref U Γ, Σ $ Ref U ă: Ref T Γ, Σ $ Ref T ă: Ref U

With that we can prove canonical forms for mutable references.

lemma 30 (Canonical Forms for References). Suppose that a store γ is
well-formed with respect to an inert environment Γ and a heap typing Σ, that
a heap σ is well-typed with respect to Γ and Σ, and that Γ $ x : Ref T. Then
the store γ assigns a location l of type Ref T to x, and l points to a variable y
of type T in the heap.

γ : Γ Γ, Σ $ σ

inert Γ Γ, Σ $ x : Ref T

γ(x) = l σ(l) = y
Γ, Σ $ l : Ref T

Γ, Σ $ y : T
(Can. Forms for l)

Finally, we can present the progress and preservation theorems, as
well as the ultimate soundness result.

theorem 31 (Mutable DOT Preservation). Let Γ be an inert typ-
ing environment and Σ a heap typing such that γ : Γ, Σ and Γ, Σ $ σ .
If Γ, Σ $ t : T and σ | γ | t ÞÝÑ σ1 | γ1 | t1 for some store γ1 and heap σ1

then there exists an inert context Γ1 and heap typing Σ1 such that γ1 : Γ1, Σ1 ,
Γ1, Σ1 $ σ1 , and Γ1, Σ1 $ t1 : T.

γ : Γ Γ, Σ $ σ

inert Γ Γ $ t : T

γ | t ÞÝÑ γ1 | t1

Γ1 $ t1 : T

Γ1, Σ1 $ σ1

γ1 : Γ1 inert Γ1

(Preservation)
theorem 32 (Mutable DOT Progress). Let γ be a store, σ a heap, Γ
an inert typing environment, and Σ a heap typing such that γ : Γ, Σ and
Γ, Σ $ σ . If Γ, Σ $ t : T then there exists a term t1, store γ1, and heap σ1

such that σ | γ | t ÞÝÑ σ1 | γ1 | t1.

γ : Γ Γ, Σ $ σ

inert Γ Γ $ t : T

γ | t ÞÝÑ γ1 | t1

(Progress)

∅, Σ $ t : T

(σ | γ | t ÞÝÑ σ1 | γ1 | t1

^t1 Û) _ t ò

(Mutable DOT
Soundness)

theorem 33 (Mutable DOT Type Soundness). If ∅, Σ $ t : T then
either t diverges (t ò) or t reduces to a normal form t1, i.e. σ | ∅ | t ÞÝÑ
σ1 | γ1 | t1, t1 Û, and Γ, Σ1 $ t1 : T for some Γ and Σ1 such that γ1 : Γ, Σ1 .

type safety 69

progress

preservation

canonical forms

general to tight

tight to invertible

invertible to precise

$ to $#

Sel
replacement

Sel
premise

Can. forms λ Can. forms ν

Corresp. types

µ to ν@ to Γ(x)@ to λ µ to Γ(x)

$# to $¡

$¡v
subtyping

closure

$# to $¡

$¡
subtyping

closure

$¡v to $! λ $¡v to $! ν$¡ to $! @ $¡ to $! µ

Ref T to l Ref T to Γ(x)

Can. forms l

$¡v to $! l $¡ to $! Ref T

Figure 12.1: An instance of the dependency graph from Figure 5.4 showing
the main lemmas in the Mutable DOT proof as an extension
of the simple DOT proof (Part I). Gray nodes denote existing
lemmas. White nodes denote Mutable DOT specific lemmas

70 type safety

The changes to the lemmas proof are shown using white nodes in
the dependence graph in Figure 12.1.

The overall structure of the dependencies between the lemmas did
not change. The new canonical forms lemmas followed the proof
recipe that we have described in Chapter 5. In the proofs of some
lemmas, we had additional new cases to prove, but the structure of
the proof of each lemma did not change. In general, we found that
the new lemmas and new cases in the existing lemmas were easy to
prove.

13
D I S C U S S I O N

In this section, we explain the design choices of Mutable DOT in more
detail and discuss possible alternative implementations.

13.1 motivation for a heap of variables

One unusual aspect of the design of Mutable DOT is that the heap con-
tains variables rather than values. We experimented with alternative
designs that contained values, and observed the following undesirable
interactions with the existing design of DOT.

A key desirable property is that the heap should be well-typed with
respect to a heap typing: @l. Γ, Σ $ σ(l) : Σ(l).

Many of the DOT type assignment rules apply only to variables,
and not to values. For example, the type ta : Ju is not inhabited by
any value, but a variable can have this type. This is because an object
value has a recursive type, and the Rec-E rule that opens a recursive
type µ (x : ta : Ju) into ta : Ju applies only to variables, not to values.
In particular, in the term

let x = ν(y : ta : Ju)ta = tu in ref x ta : Ju

x has type ta : Ju but ν(y : ta : Ju)ta = tu does not, even though the
let binding suggests that the variable and the value should be equal. If
memory cells were to contain values, a cell of type ta : Ju would not
make sense, because no values have that type.

We could try to restrict reference types to always store recursive
(or function) types. However, this would severly restrict the polymor-
phism of memory cells, because DOT does not support subtyping
between recursive types (subtyping between recursive structural types
is not supported by Scala either). In particular, it would be impossible
to define a memory cell containing objects with a field a of type J and
possibly additional fields.

The above example let term demonstrates another problem: type
preservation. The type system should admit the term ref x ta : Ju
because x has type ta : Ju. This term should reduce to a fresh location
l of type Ref ta : Ju. But a heap that maps l to ν(y : ta : Ju)ta = tu
would not be well typed, because the value does not have type ta : Ju.

71

72 discussion

13.2 correctness of a heap of variables

Putting variables instead of values in the heap raises a concern: when
we write a variable into the heap, we expect that when we read it back,
it will still be in scope, and it will still be bound to the same value. For
example, in the following program fragment, the variable x gets saved
in the heap inside the function f .

let f = λ(x : J) ref x T in
let y = v in
let r = f y in
!r

Will x go out of scope by the time we read it from the heap?
The reduction sequence for this program is shown in Figure 13.1.

Notice that before the body ref x T of the function is reduced, the
parameter x is first substituted with the argument y, which does not
go out of scope.

H | f ÞÑ λ(x : J) ref x T, y ÞÑ v | let r = f y in !r ÞÝÑ

H | f ÞÑ λ(x : J) ref x T, y ÞÑ v | let r = ref x T [y/x] in !r ÞÝÑ

H | f ÞÑ λ(x : J) ref x T, y ÞÑ v | let r = ref y T in !r ÞÝÑ

l ÞÑ y | f ÞÑ λ(x : J) ref x T, y ÞÑ v | let r = l in !r ÞÝÑ

l ÞÑ y | f ÞÑ λ(x : J) ref x T, y ÞÑ v, r ÞÑ l | !r ÞÝÑ

l ÞÑ y | f ÞÑ λ(x : J) ref x T, y ÞÑ v, r ÞÑ l | y

Figure 13.1: Reduc-
tion sequence for
example program

More generally, from the store-based reduction semantics, it is im-
mediately obvious that when a variable x is saved in the heap using
ref x T or y := x, the only variables that are in scope are those in the
store. There are no function parameters in scope that could go out of
scope when the function finishes.

σ | γ | let x = v in t
ÞÝÑ

σ | γ, x ÞÑ v | t
(Let-Value)

Moreover, once a variable is in the store, it never goes out of scope,
and the value that it is bound to never changes. This is because the
only reduction rule that modifies the store is Let-Value, and it only
adds a new variable binding, but does not affect any existing bindings.

Another natural question is whether a heap of variables limits the
expressiveness of the calculus. Since a program contains only a finite
number of variables, one might think that the size of the heap is
restricted by that number. However, during execution, the reduction
rule for function application performs capture-avoiding substitution
using alpha renaming, which introduces fresh variables as necessary.
Thus, the use of variables in the heap does not impose any restrictions
on the number of objects that can be created.

13.3 creating references 73

13.3 creating references

The Mutable DOT reference creation term ref x T requires both a type
T and an initial variable x. The variable is needed so that a reference
cell is always initialized, to avoid the need to add a null value to
DOT. If desired, it is possible to model uninitialized memory cells in
Mutable DOT by explicitly creating a sentinel null value.

Some other calculi with mutable references (e.g. Types and Pro-
gramming Languages (Pierce, 2002)) do not require the type T to be
given explicitly, but just adopt the precise type of x as the type for the
new cell. Such a design does not fit well with subtyping in DOT. In
particular, it would prevent the creation of a cell with some general
type T initialized with a variable x of a more specific subtype of T.

More seriously, such a design (together with subtyping) would
break type preservation. Suppose that Γ, Σ $ y : S and Γ, Σ $ S ă: T.
Then we could arrive at the following reduction sequence:

H | f ÞÑ λ(x : T) ref x, y ÞÑ v | f y ÞÝÑ

H | f ÞÑ λ(x : T) ref x, y ÞÑ v | ref x [y/x] ÞÝÑ

H | f ÞÑ λ(x : T) ref x, y ÞÑ v | ref y

The term at the beginning of the reduction sequence has type Ref T,
while the term at the end, ref y, has type Ref S. Preservation would
require Ref S to be a subtype of Ref T, but this is not the case in general
since the only condition that this example imposes on S and T is that
Γ, Σ $ S ă: T.

14
R E L AT E D W O R K

This part of the thesis shows how to extend the DOT calculus with
ML-style mutable references, to serve as a basis for further extensions
that involve mutation. An earlier version of the Mutable DOT calculus
with a soundness proof that extended the original proof by Amin,
Grütter, et al., (2016) appeared in a previous publication (Rapoport
and Lhoták, 2017) and a technical report (Rapoport and Lhoták, 2016).

Amin and Rompf, (2017) present mechanized soundness proofs
using definitional interpreters for big-step DOT-like calculi. The paper
and an earlier technical report (Rompf and Amin, 2016a) mention that
mutable references can be added to this class of calculi and present
a Coq formalization of System Fă: with mutable references. To our
knowledge, the formalization does not include a soundness proof for
Dă: or DOT with mutation. Additionally, the calculi discussed in the
papers are based on a big-step semantics, whereas our work focuses
on a small-step semantics for DOT.

Kabir and Lhoták, (2018) present κDOT, an extension of DOT with
constructors and mutable fields. Unlike DOT, κDOT’s objects support
strict initialization of fields, which corresponds closer to Scala than
DOT’s field semantics. κDOT’s fields are mutable by default, and
they are not explicitly typed as references, unlike in our version of
Mutable DOT. Still, κDOT can express read-only fields through setting
a field’s lower-bound type to K. The difference between Mutable DOT
and κDOT is that the latter focuses on modelling constructors and
makes all fields mutable by default, whereas Mutable DOT presents
the first and minimal addition to DOT with mutation, and supports
both mutable fields and variables.

75

15
S U M M A RY

DOT formalizes the essence of Scala, but it lacks mutation, which is
an important feature of object-oriented languages. In this part of the
thesis we showed how DOT can be extended to handle mutation in a
type-safe way.

We have seen that adding a mutable heap to the semantics of DOT
is not straightforward. The lack of subtyping between recursive types
leads to situations where variables and values, even though they are
bound together, have incompatible types. As a result, if DOT were
extended with a conventional heap containing values, it would be
impossible for a cell of a given type T to store values of different
subtypes of T, thus significantly restricting the kinds of mutable code
that could be expressed.

Our key idea was to enable support for mutation in DOT by using
a heap that contains variables instead of values. We showed that by
using a heap of variables, it is possible to extend DOT with mutable
references in a type-safe way. This leads to a formalization of a lan-
guage with path-dependent types and mutation, and also brings DOT
one step closer to encoding the full Scala language.

Although designing Mutable DOT involved non-trivial reasoning
about how to maintain preservation while allowing a mutable heap,
proving type-safety of Mutable DOT involved a straightforward exten-
sion of the simple type-safety proof presented in Part I. The extension
of DOT with mutation serves as evidence that the simple proof is
indeed simple. In the next part, we present an extension of DOT that
is more complex and involves significant changes to the proof. Nev-
ertheless, as we will show in Part III, the basic organization and key
ideas of the proof remain the same.

77

Part III

F U L LY PAT H - D E P E N D E N T T Y P E S

16
I N T R O D U C T I O N

Path-dependent types embody two universal principles of modular
programming: abstraction and composition. Abstraction allows us to

path-dependent
looooooooomooooooooon

composition

type
loomoon

abstraction

leave values or types in a program unspecified to keep it generic and
reusable. For example, in Scala, we can define trees where the node
type remains abstract:

trait Tree {
type Node
val root : Node
def add(node: Node): Tree

}

If an object x has type Tree, then the path-dependent type x.Node
denotes the type of abstract nodes.

Composition is the ability to build our program out of smaller
components. For example, if we are interested in a specific kind of
tree, say a red-black tree, then we can refine the abstract Node type to
contain a Color type:

trait RedBlackTree extends Tree {
type Node <: { type Color }

}

This exemplifies composition in at least two ways: by having Red-
BlackTree extend Tree we have inherited its members; and by nesting
the refined definition of Node within RedBlackTree we have used aggre-
gation. If an object r is a RedBlackTree, then the path-dependent type
r.root.Color allows us to traverse the composition and access the Color
type member.

As described in the previous chapters, the long struggle to formalize
path-dependent types recently led to machine-verified soundness
proofs for several variants of the DOT calculus. In spite of its apparent
simplicity DOT is an expressive calculus that can encode a variety
of language features, and the discovery of its soundness proof was a
breakthrough for the Scala community.

However, a crucial limitation is that the existing DOT calculi restrict
path-dependent types to depend only on variables, not on general
paths. That is, they allow the type x.Node (path of length 1) but not a
longer type such as r.root.Color (length 2). We need to lift this restriction
in order to faithfully model Scala which does allow general path-
dependent types. More importantly, this restriction must be lifted to
fulfill the goal of scalable component abstraction (Odersky and Zenger,
2005b), in which modules of a program can be arbitrarily nested to
form other, larger modules.

81

82 introduction

Scala:

package dotty {
package core {

object types {
class Type
class TypeRef extends Type {

val symb:
core.symbols.Symbol

}
}
object symbols {

class Symbol {
val tpe: core.types.Type

}
}

}
}

DOT:

let dotty = ν(dotty) {
core = ν(core) {
types = ν(types) {
Type = ...
TypeRef = Type ^

{ symb: core.symbols.Symbol }
}
symbols = ν(symbols) {
Symbol =
{ tpe: core.types.Type }

}
}
in ...

Figure 16.1: A
simplified excerpt
from the Dotty
compiler in Scala.
This code frag-
ment cannot be
expressed in DOT,
as shown on the
right

The final part of this thesis formalizes and proves sound a general-
ization of the DOT calculus with path-dependent types of arbitrary
length. We call the new path-dependent calculus pDOT. Our Coq-
verified proof is built on top of the simple proof presented in Part I.

At this point, two questions naturally arise. Are fully path-dependent
types really necessary? That is, do they provide additional expressive-
ness, or are they just syntactic sugar over variable-dependent types?
And if fully path-dependent types are in fact useful, what are the
barriers to adding them to DOT?

why fully path-dependent types are necessary

The need for paths of arbitrary length is illustrated by the simplified
excerpt from the implementation of the Scala 3 (“Dotty”) compiler in
Figure 16.1. Type references (TypeRef) are Types that have an underlying
class or trait definition (Symbol), while Symbols in the language also
have a Type. Additionally, TypeRefs and Symbols are nested in different
packages, core.types and core.symbols.

It is impossible to express the above type dependencies in DOT
while maintaining the nested program structure, as shown on the right
side of Figure 16.1 in DOT syntax (see Chapter 2 for a description of
the DOT syntax and type system). To replicate nested Scala modules,
DOT uses objects and fields. Unfortunately, we run into problems
when typing the symb field because its desired path-dependent type
core.symbols.Symbol has a path of length two.

We are then tempted to find a workaround. One option is to try to
reference Symbol as a path-dependent type of length one: symbols.Symbol
instead of core.symbols.Symbol. However, this will not do because symbols

introduction 83

is a field, and DOT requires that field accesses happen through the
enclosing object (core). Another option is to move the definition of the
Symbol type member to the place it is accessed from, to ensure that the
path to the type member has length 1:

types = ν(types) {
Type = ...;
Symbol = ...;
TypeRef = Type ^ { symb: types .Symbol }

}

However, such a transformation would require flattening the nested
structure of the program whenever we need to use path-dependent
types. This would limit encapsulation and our ability to organize a
program according to its logical structure. Yet another approach is to
assign the symbols object to a variable that is defined before the dotty
object:

let symbols = ν(symbols) {
Symbol = { tpe: dotty.core . types .Type }

}
in let dotty = ν(dotty) ...

This attempt fails as well, as the symbols object can no longer reference see Section 17.1 for a
minimal example
that illustrates this
limitation

the dotty package. For the above example this means that a Symbol
cannot have a Type.

This real-world pattern with multiple nested modules and intricate
dependencies between them (sometimes even recursive dependencies,
as in our example), leads to path-dependent types of length greater
than one. Because path-dependent types are used in DOT to formal-
ize features like parametric and family polymorphism (Ernst, 2001),

variable-dependent
looooooooooomooooooooooon

limited composition

type
loomoon

abstraction

covariant specialization (Bruce, Odersky, and Wadler, 1998), and wild-
cards, among others, a version of DOT with just variable-dependent
types can only formalize these features in special cases. Thus, to un-
leash the full expressive power of DOT we need path-dependent types
on paths of arbitrary length.

why fully path-dependent types are hard

The restriction to types dependent on variables rather than paths is
not merely cosmetic; it is fundamental. A key challenge in formalizing
the DOT calculi is the bad bounds problem, discussed in Chapter 4: the
occurrence of a type member in a program introduces new subtyping
relationships, and these subtyping relationships could undermine type
safety in the general case. To maintain type safety, the existing DOT
calculi ensure that whenever a type x.A is in scope, any code in the
same scope will not execute until x has been assigned some concrete
value; the value serves as evidence that type soundness has not been
subverted. If we allow a type to depend on a path, rather than a Section 17.2.1 shows

why extending DOT
with path can lead to
bad bounds

84 introduction

variable, we must extend this property to paths: we must show that
whenever a scope admits a given path, that path will always evaluate
to some stable value. The challenge of ensuring that the paths of
type-selections always evaluate to a value is to rule out the possibility
that paths cyclically alias each other, while at the same time keeping
the calculus expressive enough to allow recursion. By contrast, the
DOT calculus automatically avoids the problem of type selections on
non-terminating paths (i.e. paths whose evaluation does not terminate)
because in DOT all paths are variables, and variables are considered
normal form.

A second challenge of extending DOT with support for general
paths is to track path equality. Consider the following program:

val t1 = new ConcreteTree
val t2 = new ConcreteTree
val t3 = t2

A subclass of Tree such as ConcreteTree (not shown) refines Node with a
concrete type that implements some representation of nodes. We want
the types t1.Node and t2.Node to be considered distinct even though t1
and t2 are both initialized to the same expression. That way, we can
distinguish the nodes of different tree instances. On the other hand,
notice that the reference t3 is initialized to be an alias to the same tree
instance as t2. We therefore want t2.Node and t3.Node to be considered
the same type.

How can the type system tell the difference between t1.Node and
t2.Node, so that the former is considered distinct from t3.Node, but
the latter is considered the same? Scala uses singleton types for this
purpose. In Scala, t3 can be typed with the singleton type t2.type which
guarantees that it is an alias for the same object as t2. The type system
treats paths that are provably aliased (as evidenced by singleton types)
as interchangeable, so it considers t2.Node and t3.Node as the same
type. We add singleton types to pDOT for two reasons: first, we found
singleton types useful for formalizing path-dependent types, and
second, enabling singleton types brings DOT closer to Scala.

The contributions are as follows:

1. The pDOT calculus, a generalization of DOT with path-dependentChapter 18 provides
an intuition for

pDOT’s main ideas;
Chapter 19 presents

the calculus in detail

types of arbitrary length that lifts DOT’s type-selection-on-variables
restriction.

2. The first extension of DOT with singleton types, a Scala fea-
ture that, in addition to tracking path equality, enables the
method chaining pattern and hierarchical organization of com-
ponents (Odersky and Zenger, 2005b).

3. A Coq-mechanized type soundness proof of pDOT that is basedCoq proof:
https://git.io/dotpaths

described in
Chapter 21

on the simple soundness proof presented in Part I. Our proof
maintains the simple proof’s modularity properties which makes
it easy to extend pDOT with new features.

https://git.io/dotpaths

introduction 85

4. Formalized examples that illustrate the expressive power of pDOT: see Chapter 20

the compiler example from this section that uses general path-
dependent types, a method chaining example that uses singleton
types, and a covariant list implementation.

17
C H A L L E N G E S O F A D D I N G PAT H S T O D O T

This chapter shows why the existing DOT calculus cannot encode
path-dependent types on paths of arbitrary length and describes
how naively extending DOT with support for full paths leads to
bad bounds.

17.1 path limitations in dot : a minimal example

Consider the following example DOT object in which a type member
B refers to a type member A that is nested inside the definition of a
field c:

let x = ν(x)

tc = ν(_) tA = x.Buu^

tB = x.c.Au in . . .

In the example, to reference the field c, we must first select the
field’s enclosing object x through its self variable. As a result, the path
to A leads through x.c which is a path of length two. Since DOT does
not allow paths of length two, this definition of B cannot be expressed
in DOT without flattening the program structure so that all fields and
type members become global members of one top-level object.

Since DOT uses ANF, we may try to decompose the path of length
two into dereferences of simple variables, but as we will see, this will
fail. It does not work to first assign x.c to a local variable y outside of
the object x and then use the type y.A:

let y = x.c in
let x = ν(x)

tc = ν(_) tA = x.Buu^

tB = y.Au in . . .

This program is invalid because at the declaration site of y, x is not yet
defined. We could try other ways of let-binding the inner objects to
variables before defining the enclosing object, but all such attempts are
doomed to failure. A sequence of let bindings imposes a total ordering
on the objects and restricts an object to refer only to objects that are
defined before it. In the presence of recursive references between the
objects, as in this example, no valid ordering of the let bindings is
possible.

87

88 challenges of adding paths to dot

17.2 challenges of adding paths to dot

If restricting path-dependent types exclusively to variables limits
the expressivity of DOT then why does the calculus impose such
a constraint? Before we explain the soundness issue that makes it
difficult to extend DOT with paths we must first review the problem of
bad bounds, a key challenge that makes it difficult to ensure soundness
of the DOT calculus.

As discussed in Chapter 4, Scala’s abstract type members make it
possible to define custom subtyping relationships between types. This
is a powerful but tricky feature. For example, given any types S and U,
consider the function λ(x : tA : S..Uu) t. In the body of the function,
we can use x.A as a placeholder for some type that is a supertype
of S and a subtype of U. Some concrete type will be bound to x.A
when the function is eventually called with some specific argument.
Due to transitivity of subtyping, the constraints on x.A additionally
introduce an assumption inside the function body that S ă: U, because
S ă: x.A ă: U according to the type rules ă:-SelDOT and Sel-ă:DOT:We add an explicit

DOT annotation to
DOT rules to

distinguish them
from pDOT rules

Γ $ x : tA : S..Tu

Γ $ S ă: x.A
(ă:-SelDOT)

Γ $ x : tA : S..Tu

Γ $ x.A ă: T
(Sel-ă:DOT)

However, recall that S and U are arbitrary types, possibly with no
existing subtyping relationship. The key to soundness is that although
the function body is type-checked under the possibly unsound as-
sumption S ă: U, the body executes only when the function is called,
and calling the function requires an argument that specifies a concrete
type T to be bound to x.A. This argument type must satisfy the con-
straints S ă: T ă: U. Thus, the argument type embodies a form of
evidence that the assumption S ă: U which is used to type-check the
function body is actually valid.

More generally, given a term t of type tA : S..Uu, we can rule out
the possibility of bad bounds caused by the use of a dependent type
t.A if there exists some object with the same type tA : S..Uu. This is
because the object must bind the type member A to some concrete
type T respecting the subtyping constraints S ă: T and T ă: U, so the
object is evidence that S ă: U.

Existing DOT calculi ensure that whenever some variable x of type T
is in scope in some term t, the term reduces only after x has already
been assigned a value. The value assigned to x is evidence that T
does not have bad bounds. To ensure that any code that uses the type
x.A executes only after x has been bound to a value of a compatible
type, DOT employs a strict operational semantics. A variable x can
be introduced by one of the three binding constructs: let x = t in u,
λ(x : T) t, or ν(x : T)d. In the first case, x is in scope within u, and
the reduction semantics requires that before u can execute, t must

17.2 challenges of adding paths to dot 89

first reduce to a value with the same type as x. In the second case, x
is in scope within t, which cannot execute until an argument value
is provided for the parameter x. In the third case, the object itself is
bound to the self variable x. In summary, the semantics ensures that by
the time that evaluation reaches a context with x in scope, x is bound
to a value, and therefore x’s type does not introduce bad bounds.

17.2.1 Naive Path Extension Leads to Bad Bounds

When we extend the type system with types p.A that depend on paths
rather than variables, we must take similar precautions to control bad
bounds. If a path p has type tA : S..Uu and some normal form n also
has this type, then n must be an object that binds to type member A a
type T such that S ă: T ă: U.

However, not all syntactic paths in DOT have this property. For
example, in an object ν(x) ta = tu, where t can be an arbitrary term,
t could loop instead of reducing to a normal form of the same type.
In that case, there is no guarantee that a value of the type exists,
and it would be unsound to allow the path x.a as the prefix of a
path-dependent type x.a.A.

The following example, in which a function x.b is typed as an object
(a record with field c), demonstrates this unsoundness:

ν(x : ta : tC : @(y : J)J.. tc : Juuu ^ tb : tc : Juu)

ta = x.au ^ tb = λ(y : J) yu

Here, x.b refers to a function λ(y : J) y of type @(y : J)J. If we allowed
such a definition, the following would hold:

@(y : J)J ă: x.a.C ă: tc : Ju .

Then by subsumption, x.b, a function, has type tc : Ju and therefore it
must be an object. To avoid this unsoundness, we have to rule out the
type selection x.a.C on the non-terminating path x.a.

In general, if a path p has a field declaration type ta : Tu, then the
extended path p.a has type T, but we do not know whether there
exists a value of type T because p.a has not yet reduced to a variable.
Therefore, the type T could have bad bounds, and we should not allow
the path p.a to be used in a path-dependent type p.a.A.

The main difficulty we encountered in designing pDOT was to
ensure that type selections occur only on terminating paths while en-
suring that the calculus still permits non-terminating paths in general,
since that is necessary to express recursive functions and maintain
Turing completeness of the calculus.

18
M A I N I D E A S

This chapter outlines the main ideas that have shaped our definition Chapter 19 pressents
pDOT detailof pDOT. To distinguish the DOT typing rules by Amin, Grütter, et al.,

(2016) presented in Chapter 2 from the pDOT typing rules we will
postfix the DOT typing rules with “DOT”. For example, VarDOT is a
DOT typing rule, but Var is a pDOT typing rule.

18.1 paths instead of variables

To support fully-path-dependent types, our calculus needs to support
paths in all places where DOT permitted variables. Consider the
following example:

let x = ν(y) ta = ν(z) tB = Uuu

in x.a

In order to make use of the fact that U ă: x.a.B ă: U, we need a
type rule that reasons about path-dependent types. In DOT, this is
done through the Sel-ă:DOT and ă:-SelDOT rules, as mentioned in
Chapter 4. Since we need to select B on a path x.a and not just on
a variable x, we need to extend the rules (merged into one here for
brevity) to support paths:

Γ $ x : tA : S..Tu

Γ $ S ă: x.A ă: T
ă:-Sel-ă:DOT

ñ

Γ $ p : tA : S..Tu

Γ $ S ă: p .A ă: T
ă:-Sel-ă:

However, before we can use this rule we need to also generalize the
recursion elimination rule Rec-EDOT. In the above example, how do
we obtain the typing Γ $ x.a : tB : U..Uu? The only identifier of the
inner object is x.a, a path. The type of the path is µ (z : tB : U..Uu).
In order to use the type member B, it is necessary to specialize this
recursive type, replacing the recursive self variable z with the path x.a.
This is necessary because the type U might refer to the self variable
z, which is not in scope outside the recursive type. Thus, in order
to support path-dependent types, it is necessary to allow recursion
elimination on objects identified by paths:

Γ $ x : µ (y : T)

Γ $ x : T [x/y]
Rec-E DOT

ñ

Γ $ p : µ (y : T)

Γ $ p : T [p/y]
Rec-E

By similar reasoning, we need to generalize all DOT variable-typing
rules to path-typing rules. As we show later, we also have to generalize
DOT’s ANF syntax to use paths wherever DOT uses variables, so all

91

92 main ideas

the DOT reduction rules that operate on variables are generalized to
paths in pDOT.

18.2 paths as identifiers

A key design decision of pDOT is to let paths represent object identity.
In DOT, object identity is represented by variables, which works
out because variables are irreducible. In pDOT, paths are irreducible,
because reducing paths would strip objects of their identity and break
preservation.

18.2.1 Variables are Identifiers in DOT

In the DOT calculus by Amin, Grütter, et al., (2016), variables do not
reduce to values for two reasons:

– type safety: making variables irreducible is necessary to maintain
preservation, and

– object identity: to access the members of objects (which can recur-
sively reference the object itself), objects need to have a name;
reducing variables would strip objects of their identity.

If variables in DOT reduced to values, then in the previous example
program, 4 x would reduce to4 let x = ν(y)

ta = ν(z) tB = Uuu

in x.a v = ν(y) ta = ν(z) tB = Uuu .

To maintain type preservation, for any type T such that Γ $ x : T, we
also must be able to derive Γ $ v : T. Since

Γ $ x : µ (y : ta : µ (z : tB : U..Uu)u) ,

by recursion elimination Rec-EDOT,

Γ $ x : ta : µ (z : tB : U [x/y]..U [x/y]u)u .

Does v also have that type? No!

Γ $ x : µ (y : ta : µ (z : tB : U..Uu)u)
Γ $ x : ta : µ (z : tB : U [x/y] ..U [x/y]u)u

Rec-EDOT
γ : Γ

γ(x) = v
γ | x ÞÝÑ γ | v

Hypothetical Reduction

Γ $ v : ta : µ (z : tB : U [x/y] ..U [x/y]u)u
preservationDOT

The value v has only the recursive type

µ (y : ta : µ (z : tB : U..Uu)u) .

18.2 paths as identifiers 93

Since v is no longer connected to any specific name, no recursion
elimination is possible on its type. In particular, it does not make sense
to give this value the type

ta : µ (z : tB : U [x/y] ..U [x/y]u)u

because this type refers to x, but after the reduction, the value is no
longer associated with this name.

The example illustrates that in DOT, variables represent the identity
of objects. This is necessary in order to access an object’s members:
object members can reference the object itself, for which the object
needs to have a name.

18.2.2 Paths are Identifiers in pDOT

In pDOT, paths represent the identity of objects and therefore they
must be irreducible. Similarly to DOT, reducing paths would lead to
unsoundness and strip nested objects of their identity. Making paths
irreducible means that in pDOT, we cannot have an analog of DOT’s

γ(x) =

ν(x : T) . . . ta = tu . . .

γ | x.a ÞÝÑ γ | t
(ProjDOT)

field selection rule ProjDOT.
Consider the field selection x.a from the previous example. What is

its type? By recursion elimination,

Γ $ x.a : tB : U [x.a/z] ..U [x.a/z]u

If pDOT had a path-reduction rule Proj analogous to DOT’s ProjDOT,
then x.a would reduce to ν(z)tB = Uu. However, that value does not
have the type tB : U [x.a/z] ..U [x.a/z]u; it only has the recursive type
µ (z : tB : U..Uu).

Γ $ x.a : µ (z : tB : U..Uu)
Γ $ x.a : tB : U [x.a/z] ..U [x.a/z]u

Rec-E
γ : Γ

γ(x) = ν(y) ta = ν(z) tB = Uuu
γ | x.a ÞÝÑ γ | ν(z) tB = Uu

Hypothetical Proj

Γ $ ν(z) tB = Uu : tB : U [x.a/z] ..U [x.a/z]u
preservation

The reduction step from x.a to ν(z)tB = Uu caused the object to

lose its name. Since the non-recursive type of the term depends on
the name, the loss of the name also caused the term to lose its non-
recursive type. This reduction step violates type preservation and type
soundness.

18.2.3 Well-Typed Paths Don’t Go Wrong

If pDOT programs can return paths without reducing them to values,
could these paths be nonsensical? The type system ensures that they
cannot. In particular, we ensure that if a path p has a type then p either
identifies some value, and looking up p in the runtime configuration

94 main ideas

terminates, or p is a path that cyclically aliases other paths. Addition-
ally, the pDOT safety proof ensures that if a path has a function orsee Chapter 21 for

pDOT safety proof object type, then it can be looked up to a value; if p can only be typed
with a singleton type (or J), then the lookup will loop.

18.3 path replacement

We introduce a path replacement operation for types that contain paths
which reference the same object. If a path q is assigned to a path p

val t1 =
new ConcreteTree

val t2 =
new ConcreteTree

val t3 = t2

then q aliases p. In the tree example from Chapter 16, t3 aliases t2,
but t1 does not alias t2, even though they identify syntactically equal
objects.

If q is an alias of p we want to ensure that we can use q in the same
way as p. For example, any term that has a type T Ñ p.A should also
have the type T Ñ q.A, and vice versa. In pDOT, we achieve this by
introducing a subtyping relationship between equivalent types: if p and
q are aliases, and a type T can be obtained from type U by replacing
instances of p in U with q then T and U are equivalent. For example,Section 19.2 defines

the replacement
operation precisely

T Ñ q.A can be obtained from T Ñ p.A by replacing p with q, and
these types are therefore equivalent.

18.4 singleton types

To keep track of path aliases in the type system we use singleton types.
Suppose that a pDOT program assigns the path q to p, and that a

type T can be obtained from U by replacing an instance of p with q.
How does the type system know that T and U are equivalent? We
could try passing information about the whole program throughout
the type checker. However, that would make reasoning about types
depend on reasoning about values, which would make typechecking
more complicated and less modular, as shown in Part I.

Instead, we ensure that the type system keeps track of path aliasing
using singleton types, an existing Scala feature. A singleton type of a
path p, denoted p.type, is a type that is inhabited only with the value
that is represented by p. In the tree example from Chapter 16, to tell
the type system that t3 aliases t2, we ensure that t3 has the singleton
type t2.type. This information is used to allow subtyping betweenSection 19.2

describes how
singleton types track

path identity

aliased paths, and to allow such paths to be typed with the same
types.

In pDOT, singleton types are an essential feature that is necessary to
encode fully path-dependent types. However, this makes pDOT also
the first DOT formalization of Scala’s singleton types. In Chapter 20,
we show a pDOT encoding of an example that motivates this Scala
feature.

18.5 distinguishing fields and methods 95

18.5 distinguishing fields and methods

Scala distinguishes between fields (vals, immutable fields that are
strictly evaluated at the time of object initialization) and methods (defs,
which are re-evaluated at each invocation). By contrast, DOT unifies
the two in the concept of a term member. Since the distinction affects
which paths are legal in Scala, we must make some similar distinction
in pDOT. Consider the following Scala program:

val x = new {
val a: { type A } = ta

def b: { type B } = tb
}
val y: x.a.A
val z: x.b.B

Scala allows path-dependent types only on stable paths (Documen-
tation, 2018b). A val can be a part of a stable path but a def cannot.
Therefore, the type selection x.a.A is allowed but x.b.B is not.

DOT unifies the two concepts in one:

let x = ν(x) ta = tau ^ tb = tbu in . . .

However, this translation differs from Scala in the order of evaluation.
Scala’s fields, unlike DOT’s, are fully evaluated to values when the
object is constructed. Therefore, a more accurate translation of this
example would be as follows:

let a1 = ta in
let x = ν(x)

a = a1
(

^ tb = λ(_). tbu in . . .

This translation highlights the fact that although Scala can initialize
x.a to an arbitrary term, that term will be already reduced to a value
before evaluation reaches a context that contains x. The reason is that
the constructor for x will strictly evaluate all of x’s val fields when x is
created.

To model the fact that Scala field initializers are fully evaluated
when the object is constructed, we require field initializers in pDOT to
be values or paths, rather than arbitrary terms. We use the name stable
term for a value or path.

This raises the question of how to model a Scala method such as b.
A method can still be represented by making the delayed evaluation
of the body explicit: instead of initializing the field b with the method
body itself, we delay the body inside a lambda abstraction. The lambda
abstraction, a value, can be assigned to the field b. The body of the
lambda abstraction can be an arbitrary term; it is not evaluated during
object construction, but later when the method is called and the
lambda is applied to some dummy argument.

96 main ideas

18.6 precise self types

DOT allows powerful type abstractions, but it demands objects as
proof that the type abstractions make sense. An object assigns actual
types to its type members and thus provides concrete evidence for the
declared subtyping relationships between abstract type members. To
make the connection between the object value and the type system,
DOT requires the self type in an object literal to precisely describe
the concrete types assigned to type members, and we need to define
similar requirements for self types in pDOT.

In the object
ν(x : tA : T..Tu) tA = Tu

DOT requires the self-type to be tA : T..Tu rather than some wider
type tA : S..Uu. This is not merely a convenience, but it is essential for
soundness. Without the requirement, DOT could create and type the
object

ν(x : tA : J..Ku) tA = Tu

which introduces the subtyping relationship J ă: K and thus makes
every type a subtype of every other type. Although we can require the
actual assigned type T to respect the bounds (i.e. J ă: T ă: K), such a
condition is not sufficient to prohibit this object. The assigned type T
and the bounds (J and K in this example) can in general depend on
the self variable, and thus the condition makes sense only in a typing
context that contains the self variable with its declared self type. But in
such a context, we already have the assumption that J ă: x.A ă: K, so
it holds that J ă: T (since J ă: x.A ă: K ă: T) and similarly T ă: K.

In pDOT, a path-dependent type p.A can refer to type members not
only at the top level, but also deep inside the object. Accordingly, we
need to extend the precise self type requirement to apply recursively
within the object, as follows:

1. An object containing a type member definition tA = Tu must
declare A with tight bounds, using tA : T..Tu in its self type.

2. An object containing a definition ta = ν(x : T)du must declare
a with the recursive type µ (x : T), using ta : µ (x : T)u in its self
type.

3. An object containing a definition ta = λ(x : T)Uu must declare
a with a function type, using ta : @(x : S)Vu in its self type.

4. An object containing a definition ta = pu must declare a with
the singleton type p.type, using ta : p.typeu in its self type.

The first requirement is the same as in DOT. The second and third
requirements are needed for soundness of paths that select type mem-
bers from deep within an object. The fourth requirement is needed to

18.6 precise self types 97

prevent unsoundness in the case of cyclic references. For example, if
we were to allow the object

ν(x : ta : tA : J..Kuu) ta = x.au

we would again have J ă: K. The fourth requirement forces this object
to be declared with a precise self type:

ν(x : ta : x.a.typeu) ta = x.au

Now, x.a no longer has the type tA : J..Ku, so it no longer collapses
the subtyping relation. The precise typing thus ensures that cyclic
paths can be only typed with singleton types but not function or object
types, and therefore we cannot have type or term selection on cyclic
paths.

Although both DOT and pDOT require precision in the self type of
an object, the object itself can be typed with a wider type once it is
assigned to a variable. For example, in DOT, if we have

let x = ν(x : tA : T..Tu) tA = Tu in . . .

then x also has the wider type tA : K..Ju. Similarly, in pDOT, if we
have

let x = ν(x : ta : µ (y : tb : @(z : T)Uu)^ tc : x.a.b.typeuu)d in . . .

then x also has all of the following types:

Γ $ x : ta : tb : @(z : T)Uuu

Γ $ x : ta : µ (y : tb : Ju)u

Γ $ x : tc : x.a.b.typeu
Γ $ x : tc : @(z : T)Uu

In fact, the typings for this object in pDOT are more expressive
than in DOT. Because DOT does not open types nested inside of
field declarations, DOT cannot assign the first two types to x. In
Section 19.2, we show one simple type rule that generalizes pDOT
to open and abstract types of term members nested deeply inside an
object. In Chapter 20, we encode several examples from previous DOT
papers in pDOT and show that the real-world compiler example from
Chapter 16 that uses types depending on long paths can be encoded
in pDOT as well.

In summary, both DOT and pDOT require the self type in an object
literal to precisely describe the values in the literal, but this does
not limit the ability to ascribe a more abstract type to the paths that
identify the object.

19
F R O M D O T T O P D O T

p, q, r path

s stable term

p, q, r :=

x

p.a

t, u :=

s

p q

let x = t in u

s :=

p

v

v :=

ν(x : T)d

λ(x : T) t

d :=

ta = su

tA = Tu

d^ d1

S, T, U :=

J

K

ta : Tu

tA : S..Tu

p .A

p.type
S^ T

µ (x : T)
@(x : S) T

Figure 19.1: Ab-
stract syntax
of pDOT (cf.
DOT syntax in
Figure 2.1)

The pDOT calculus generalizes DOT by allowing paths wherever DOT
allows variables (except in places where variables are used as binders,
such as x in λ(x : T) t).

19.1 syntax

Figure 19.1 shows the abstract syntax of pDOT. The signature con-
struct in pDOT is a path, defined to be a variable followed by zero or
more field selections (e.g. x.a.b.c). pDOT uses paths wherever DOT
uses variables. In particular, field selections x.a and function appli-
cation x y are done on paths: p.a and p q. Most importantly, pDOT
also generalizes DOT’s types by allowing path-dependent types p.A
on paths rather than just on variables. Additionally, as described in
Section 18.4, the pDOT calculus formalizes Scala’s singleton types. A
singleton type p.type is inhabited with only one value: the value that
is assigned to the path p. A singleton type thus indicates that a term
designates the same object as the path p. Just as a path-dependent
type p.A depends on the value of p, a singleton type q.type depends
on the value of q. Singleton types are therefore a second form of
dependent types in the calculus.

In pDOT, paths and values are considered stable terms. As motivated
in Section 18.5, to distinguish between fields and methods, term mem-
bers of object definitions can only be assigned stable terms, while still
allowing the same (and even more expressive) type abstractions as in
DOT. We use the meta-variable s to denote stable terms.

19.2 pdot typing rules

The typing and subtyping rules of pDOT are shown in Figures 19.2
and 19.3.

19.2.1 From Variables to Paths

The first thing to notice in the pDOT typing and subtyping rules is
that all variable-specific rules, except Var, are generalized to paths, as
motivated in Section 18.1. The key rules that make DOT and pDOT
interesting are the type-selection rules <:-Sel and Sel-<:. These rules
enable us to make use of the type member in a path-dependent
type. When a path p has type tA : S..Uu, the rules introduce the
path-dependent type p.A into the subtyping relation by declaring the

99

100 from dot to pdot

Term typing
Γ $ t : T

Γ(x) = T

Γ $ x : T
(Var)

Γ, x : T $ t : U x R fv(T)

Γ $ λ(x : T) t : @(x : T)U
(All-I)

Γ $ p : @(z : S) T Γ $ q : S

Γ $ p q : T [q/z]
(All-E)

x ; Γ, x : T $ d : T

Γ $ ν(x : T)d : µ (x : T)
({}-I)

Γ $ p : ta : Tu

Γ $ p .a : T
(Fld-E)

Γ $ p.a : T

Γ $ p : ta : Tu
(Fld-I)

Γ $ t : T
Γ, x : T $ u : U x R fv(U)

Γ $ let x = t in u : U
(Let)

Γ $ p : q.type Γ $ q : T

Γ $ p : T
(Sngl-Trans)

Γ $ p : q.type Γ $ q.a

Γ $ p.a : q.a.type
(Sngl-E)

Γ $ p : T [p/x]

Γ $ p : µ (x : T)
(Rec-I)

Γ $ p : µ (x : T)

Γ $ p : T [p/x]
(Rec-E)

Γ $ p : T Γ $ p : U

Γ $ p : T ^ U
(&-I)

Γ $ t : T Γ $ T ă: U

Γ $ t : U
(Sub)

Definition typing
p; Γ $ d : T

p ; Γ $ tA = Tu : tA : T..Tu (Def-Typ)

p; Γ $ λ(x : T) t : @(x : U)V

p; Γ $ ta = λ(x : T) tu : ta : @(x : U)Vu

(Def-All)

p.a; Γ $ d [p.a/y] : T [p.a/y] tight T

p; Γ $ ta = ν(y : T)du : ta : µ (y : T)u
(Def-New)

Γ $ q

p; Γ $ ta = qu : ta : q.typeu
(Def-Path)

p ; Γ $ d1 : T1 p ; Γ $ d1 : T2

dom(d1), dom(d2) disjoint

p ; Γ $ d1 ^ d2 : T1 ^ T2
(AndDef-I)

Typeable paths
Γ $ p

Γ $ p : T

Γ $ p
(Wf)

Tight bounds
tight T

tight T =

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

U = V if T = tA : U..Vu

tightU if T = µ (x : U) or T = ta : Uu

tightU and tightV if T = U ^ V

true otherwise

Figure 19.2: pDOT
typing rules (cf.
DOT typing in Fig-
ure 2.3)

19.2 pdot typing rules 101

Γ $ T ă: J (Top)

Γ $ K ă: T (Bot)

Γ $ T ă: T (Refl)

Γ $ S ă: T Γ $ T ă: U

Γ $ S ă: U
(Trans)

Γ $ T ^ U ă: T (And1-ă:)

Γ $ T ^ U ă: U (And2-ă:)

Γ $ S ă: T Γ $ S ă: U

Γ $ S ă: T ^ U
(ă:-And)

Γ $ T ă: U

Γ $ ta : Tu ă: ta : Uu

(Fld-ă:-Fld)

Γ $ S2 ă: S1 Γ $ T1 ă: T2

Γ $ tA : S1..T1u ă: tA : S2..T2u

(Typ-ă:-Typ)

Γ $ p : tA : S..Tu

Γ $ S ă: p .A
(ă:-Sel)

Γ $ p : q.type Γ $ q

Γ $ T ă: T [q/p]
(Snglpq-ă:)

Γ $ p : q.type Γ $ q

Γ $ T ă: T [p/q]
(Snglqp-ă:)

Γ $ p : tA : S..Tu

Γ $ p .A ă: T
(Sel-ă:)

Γ $ S2 ă: S1

Γ, x : S2 $ T1 ă: T2

Γ $ @(x : S1) T1 ă: @(x : S2) T2
(All-ă:-All)

Figure 19.3: pDOT
subtyping rules (cf.
DOT subtyping in
Figure 2.3)

subtyping constraints S ă: p.A and p.A ă: U. Thanks to these two
rules, pDOT supports fully-path-dependent types.

19.2.2 Object Typing

Similarly to the DOT calculus, the {}-I rule gives an object ν(x : T)d
with declared type T which may depend on the self variable x the
recursive type µ (x : T). The rule also checks that the definitions d of
the object actually do have type T under the assumption that the self
variable has this type. The object’s definitions d are checked by the
Definition typing rules. As discussed in Section 18.6, the rules assign
a precise self type for objects, ensuring that paths are declared with
singleton types, functions with function types, and objects with object
types. For objects, the tight T condition ensures that all type members
that can be reached by traversing T’s fields have equal bounds, while
still allowing arbitrary bounds in function types.5 5 see Section 21.1 for

detailsA difference with DOT is that pDOT’s definition-typing judgment
keeps track of the path that represents an object’s identity. When we
typecheck an outermost object that is not nested in any other object,
we use the {}-I rule. The rule introduces x as the identity for the object
and registers this fact in the definition-typing judgment. To typecheck
an object that is assigned to a field a of another object p we use the
Def-New rule. This rule typechecks the object’s body assuming the
object identity p.a and replaces the self-variable of the object with that
path. The definition-typing judgment keeps track of the path to the

102 from dot to pdot

definition’s enclosing object starting from the root of the program.
This way the type system knows what identities to assign to nested
objects. For example, when typechecking the object assigned to x.a in
the expression

let x = ν(x) ta = ν(y) tb = y.buu in . . .

we need to replace y with the path x.a:

Γ, x : ta : µ (y : tb : y.b.typeu)u $ x.a
x.a; Γ, x : ta : µ (y : tb : y.b.typeu)u $ tb = x.a.bu : tb : x.a.b.typeu

Def-Path

tight tb : y.b.typeu
x; Γ, x : ta : µ (y : tb : y.b.typeu)u $ ta = ν(y) tb = y.buu : ta : µ (y : tb : y.b.typeu)u

Def-New

Γ $ ν(x) ta = ν(y) tb = y.buu : µ (x : ta : µ (y : tb : y.b.typeu)u)
{}-I

An alternative design of the Def-New rule can be to introduce a fresh
variable y into the context (similarly to the {}-I rule). However, we
would have to assign y the type x.a.type to register the fact that these
two paths identify the same object. We decided to simplify the rule by
immediately replacing the nested object’s self variable with the outer
path to avoid the indirection of an additional singleton type.

19.2.3 Path Alias Typing

In pDOT, singleton-type related typing and subtyping rules are re-
sponsible for the handling of aliased paths and equivalent types.

singleton type creation How does a path p obtain a singleton
type? A singleton type indicates that in the initial program, a prefix of
p (which could be all of p) is assigned a path q. For example, in the
program

let x = ν(x : ta : x.typeu ^ tb : Su) ta = xu ^ tb = su in . . .

the path x.a should have the type x.type because x.a is assigned the
path x. The singleton type for x.a can be obtained as follows. Suppose
that in the typing context of the let body, x is mapped to the type
of its object, µ (x : ta : x.typeu ^ tb : Su). Through applying recursion
elimination (Rec-E), field selection (Fld-E), and finally subsumption
(Sub) with the intersection subtyping rule And1-ă:, we will obtain
that Γ $ x.a : x.type.

In the above example, x.a aliases x, so anything that we can do
with x we should be able to do with x.a. Since x has a field b and
we can create a path x.b, we want to also be able to create a path
x.a.b. Moreover, we want to treat x.a.b as an alias for x.b. This is done

Γ $ q.a

Γ $ p : q.type

Γ $ p.a : q.a.type
(Sngl-E)

through the Sngl-E rule: it says that if p aliases q, and q.a has a type
(denoted with Γ $ q.a), then p.a aliases q.a. This rule allows us to
conclude that Γ $ x.a.b : x.b.type.

19.2 pdot typing rules 103

singleton type propagation In the above example we estab-
lished that the path x.a.b is an alias for x.b. Therefore, we want to be
able to type x.a.b with any type with which we can type x.b. The

Γ $ q : T

Γ $ p : q.type

Γ $ p : T
(Sngl-Trans)

Sngl-Trans rule allows us to do just that: if p is an alias for q, then
we can type p with any type with which we can type q. Using that
rule, we can establish that Γ $ x.a.b : S because Γ $ x.b : S.

equivalent types As described in Section 18.3, we call two types
equivalent if they are equal up to path aliases. We need to ensure
that equivalent types are equivalent by subtyping, i.e. that they are
subtypes of each other. For example, suppose that Γ $ p : q.type, and
the path r refers to an object ν(x) ta = pu ^ tb = pu. Then we want to
be able to type r with all of the following types:

Γ $ r : ta : p.typeu ^ tb : p.typeu Γ $ r : ta : p.typeu ^ tb : q.typeu
Γ $ r : ta : q.typeu ^ tb : q.typeu Γ $ r : ta : q.typeu ^ tb : p.typeu

The pDOT subtyping rules Snglpq-ă: and Snglqp-ă: allow us to assign
these types to r by establishing subtyping between equivalent types.
Specifically, if we know that Γ $ p : q.type then the rules allow us to
replace any occurrence of p in a type T with q, and vice versa, while

Γ $ p : q.type Γ $ q

Γ $ T ă: T [q/p]
(Snglpq-ă:)

Γ $ p : q.type Γ $ q

Γ $ T ă: T [p/q]
(Snglqp-ă:)

maintaining subtyping relationships in both directions.
We express that two types are equivalent using the replacement

operation. The operation is similar to the substitution operation, except
that we replace paths with paths instead of variables with terms, and
we replace only one path at a time rather than all of its occurrences.
The statement T [q/p] = U denotes that the type T contains one or
more paths that start with p, e.g. p.b1, . . . , p.bn, and that exactly one
of these occurrences p.bi is replaced with q.bi, yielding the type U.
Note that it is not specified exactly in which occurrence of the above
paths the prefix p is replaced with q. The precise definition of the
replacement operation is presented in Figure 19.4.

Given the path r from the above example, we can choose whether
to replace the first or second occurrence of p with q; for example, we
can derive

. . .
Γ $ r : ta : p.typeu^ tb : p.typeu

Rec-E
Γ $ p : q.type

. . .
ta : p.typeu^ tb : p.typeu [q/p] = ta : p.typeu^ tb : q.typeu

Repl-And2

Γ $ ta : p.typeu^ tb : p.typeu ă: ta : p.typeu^ tb : q.typeu
Snglpq-ă:

Γ $ r : ta : p.typeu^ tb : q.typeu
Sub

To replace several occurrences of a path with another, we repeatedly
apply Snglpq-ă: or Snglqp-ă:.

104 from dot to pdot

p.b.A [q/p] = q.b.A (Repl-Path)

p.b.type [q/p] = q.b.type (Repl-Sngl)

T1 [q/p] = T2

(T1 ^U) [q/p] = T2 ^U
(Repl-And1)

T1 [q/p] = T2

(U ^ T1) [q/p] = U ^ T2
(Repl-And2)

T [q/p] = U

µ (x : T) [q/p] = µ (x : U)

(Repl-Rec)

T1 [q/p] = T2

(@(x : T1)U) [q/p] = @(x : T2)U
(Repl-All1)

T1 [q/p] = T2

(@(x : U) T1) [q/p] = @(x : U) T2
(Repl-All2)

T1 [q/p] = T2

ta : T1u [q/p] = ta : T2u
(Repl-Fld)

T1 [q/p] = T2

tA : T1..Uu [q/p] = tA : T2..Uu
(Repl-Typ1)

T1 [q/p] = T2

tA : U..T1u [q/p] = tA : U..T2u

(Repl-Typ2)

Figure 19.4: Re-
placement of a
path p in a type
by q

19.2.4 Abstracting Over Field Types

Finally, we describe one of the most interesting pDOT rules which
adds significant expressivity to pDOT.

Consider a function

f = λ(x : ta : Tu) . . .

and a path p that refers to the object

ν(x : ta : q.typeu) ta = qu

where Γ $ q : T. Since

Γ $ p : µ (x : ta : q.typeu)

by Rec-E, we havewe assume for
simplicity that q

does not start with x Γ $ p : ta : q.typeu

Therefore, since Γ $ q : T, we would like to be able to pass p into the
function f which expects an argument of type ta : Tu. Unfortunately,
the typing rules so far do not allow us to do that because although
q has type T, q.type is not a subtype of T, and therefore ta : q.typeu is
not a subtype of ta : Tu.

The type rule Fld-I allows us to bypass that limitation. If a path p
has a record type ta : Tu (and therefore Γ $ p.a : T), then the rule lets

Γ $ p.a : T

Γ $ p : ta : Tu

(Fld-I)

19.3 reduction semantics 105

us type p with any type ta : Uu as long as p.a can be typed with U.
More generally, using this typing rule, we can derive

Γ $ p.a1.a2. ¨ ¨ ¨ .an : U
Γ $ p : ta1 : ta2 : . . . tan : Uuuu

For the above example, we can prove that Γ $ p : ta : Tu and pass it
into f as follows:

Γ $ p : ta : q.typeu
Γ $ p.a : q.type

Fld-E
Γ $ q : T

Γ $ p.a : T
Sngl-Trans

Γ $ p : ta : Tu
Fld-I

The Fld-I rule allows us to eliminate recursion on types that are
nested inside fields, which is not possible in DOT. If a DOT function f
expects a parameter of type ta : µ (x : T)u, then in DOT, we cannot
pass a variable y of type ta : µ (x : T^U)u or a variable z of type
ta : T [z.a/x]u into f because there is no subtyping between recursive
types, and there is no subtyping relationship between µ (x : T) and
T [z.a/x] (and the latter type might not exist in the first place due to
the lack of fully-path-dependent types). All of the above is possible
in pDOT because both y.a and z.a can be typed with µ (x : T), which
allows us to use the Fld-I rule and type y and z as ta : µ (x : T)u.

19.3 reduction semantics

The operational semantics of pDOT is presented in Figure 19.5. pDOT’s
reduction rules mirror the DOT rules with three distinctions:

– paths everywhere: wherever DOT uses (as opposed to defines)
variables, pDOT uses paths;

– no ProjDOT: there is no reduction rule for field projection because
in pDOT, paths are normal form (as motivated in Section 18.2.2);

– path lookup: pDOT uses the reflexive, transitive closure of the path
lookup operation that generalizes variable lookup in stores to
paths.

The path lookup operation is presented in Figure 19.6. This opera-
tion allows us to look up a value that is nested deeply inside an object.
If a path is a variable the lookup operation is a straightforward vari-
able lookup (Lookup-Step-Var). If in a store γ, a path p is assigned
an object ν(x) ta = su then γ $ p.a s [p/x] because the self variable
x in s gets replaced with p (Lookup-Step-Val). If p is equal to another
path q then γ $ p.a q.a (Lookup-Step-Path).

Finally, we want to be able to follow a sequence of paths in a store:
for example, if γ $ p q and γ $ q v, we want to conclude that

106 from dot to pdot

γ $ p ˚ λ(z : T) t

γ | p q ÞÝÑ γ | t [q/z]
(Apply)

γ | let x = p in t ÞÝÑ γ | t [p/x] (Let-Path)

γ | let x = v in t ÞÝÑ γ, x ÞÑ v | t (Let-Value)

γ | t ÞÝÑ γ1 | t1

γ | let x = t in u ÞÝÑ γ1 | let x = t1 in u
(Ctx)

Figure 19.5: Opera-
tional semantics of
pDOT

γ(x) = v

γ $ x v
(Lookup-Step-Var)

γ $ p ν(x : T) . . . ta = su . . .

γ $ p.a s [p/x]
(Lookup-Step-Val)

γ $ p q

γ $ p.a q.a
(Lookup-Step-Path)

γ $ s ˚ s (Lookup-Refl)

γ $ s1 s2 γ $ s2 ˚ s3

γ $ s1 ˚ s3
(Lookup-Trans)

Figure 19.6: Value-
environment path
lookup

19.3 reduction semantics 107

looking up p yields v. This is done through the reflexive, transitive
closure ˚ of the relation (Lookup-Refl and Lookup-Trans).

For example, looking up x.a.c in the environment

γ =(y, ν(y1)tb = ν(y2)tc = λ(z : J) zuu)),

(x, ν(x)ta = y.bu)

yields λ(z : J) z:

γ(x) = ν(x)t a = y.bu γ(y) = ν(y1)t b = ν(y2)t c = λ(z : J) zuu

γ $ x ν(x)t a = y.bu γ $ y ν(y1)t b = ν(y2)t c = λ(z : J) zuu

γ $ x. a y.b γ $ y. b ν(y2)t c = λ(z : J) zu

γ $ x. a.c y.b.c γ $ y. b. c λ(z : J) z

γ $ x.a.c ˚ λ(z : J) z

The reduction rule that uses the lookup operation is the function
application rule Apply: to apply p to q we must be able to look up p
in the store and obtain a function. Since pDOT permits cycles in paths,
does this mean that the lookup operation for this type rule might not
terminate? Fortunately, pDOT’s type safety ensures that this will not
happen. As shown in Section 21.4, if Γ $ p : @(T : U) then lookup
of p eventually terminates and results in a function value. Therefore,
a function application p q always makes progress.

20
E X A M P L E S

In this chapter, we present three pDOT program examples that il-
lustrate different features of the calculus. All of the programs were
formalized and typechecked in Coq.

To make the examples easier to read, we simplify the notation for
objects ν(x : U)d by removing type annotations where they can be
easily inferred, yielding a new notation ν(x ñ d1) where d1 are the
definitions d modified as follows:

– a type definition tA = Tu can be only typed with tA : T..Tu, so
we will skip type declarations;

– in a definition ta = pu, the field a is assigned a path and can be
only typed with a singleton type; we will therefore skip the type
ta : p.typeu;

– in a definition ta = ν(x : T)du, a is assigned an object that must
be typed with µ (x : T); since we can infer T by looking at the
object definition, we will skip the typing ta : µ (x : T)u;

– we inline the type of abstractions into the field definition (e.g.
ta : @(T : U) = λ(x : T) tu).

For readability we will also remove the curly braces around object def-
initions and replace the ^ delimiters with semicolons. As an example
of our abbreviations, the object

ν(x : tA : T..Tu ^ ta : p.typeu ^ tb : µ (y : U)u ^ tc : @(z : S)Vu

tA = Tu ^ ta = pu ^ tb = ν(y : U)du ^

c = λ(z : S1) t
(

)

will be encoded as

ν(x ñ A = T; a = p; b = ν(y ñ d1); c : @(z : S)V = λ(z : S1) t)

Note that translating the nested object ν(y : U)d yielded a new notation
ν(y ñ d1) where d1 stands for the new encoding of d.

20.1 class encodings

Fully path-dependent types allow pDOT to define encodings for
Scala’s module system and classes, as we will see in the examples
below.

In Scala, declaring a class A(args) automatically defines both a type
A for the class and a constructor for A with parameters args. We will

109

110 examples

encode such a Scala class in pDOT as a type member A and a method
newA that returns an object of type A:

ν(p ñ

A = µ (this : tfoo : @(_)Uu) ;

newA : @(x : U) p.A

= ν(this) tfoo = λ(_). xu)

package p {
class A(x: U) {

def foo: U = x
}

}

To encode subtyping we use type intersection. For example, we can
define a class B that extends A as follows:

ν(p ñ

B = p.A^ tC : K..Ju ;

newB : @(x : U) p.B

= ν(this)tfoo = λ(_). x;

C = . . . u)

package p {
class B(x:U) extends A(x:U) {

type C
}

}

20.2 lists 111

20.2 lists

As an example to illustrate that pDOT supports the type abstractions
of DOT we formalize the covariant-list library by Amin, Grütter, et al.,
(2016) in pDOT, presented in Figure 20.1. The encoding defines List
as a data type with an element type A and methods head and tail.
The library contains nil and cons fields for creating lists. To soundly
formalize the list example, we encode head and tail as methods (defs) as
opposed to vals by wrapping them in lambda abstractions, as discussed
in Section 18.5. This encoding also corresponds to the Scala standard
library where head and tail are defs and not vals, and hence one cannot
perform a type selection on them.

By contrast, the list example by Amin, Grütter, et al., (2016) encodes
head and tail as fields without wrapping their results in functions. For
a DOT that supports paths, such an encoding is unsound because
it violates the property that paths to objects with type members are
acyclic. In particular, since no methods should be invoked on nil, its
head and tail methods are defined as non-terminating loops, and nil’s
element type is instantiated to K. If we allowed nil.head to have type K
then since K ă: tA : J..Ku, we could derive J ă: nil.head.A ă: K.

ν(sci ñ List = µ(self : tA : K..Ju^
thead : @(_) self.Au^
ttail : @(_) (sci.List^ tA : K..self.Au)u);

nil : @(x : tA : K..Ju) sci.List^ tA : K..Ku
= λ(x : tA : K..Ju)

let result = ν(self ñ A = K;
head : @(y : J) self.A = λ(y : J) self.head y;
tail : @(y : J) (sci.List^ self.A) = λ(y : J) self.tail y)

in result;
cons : @(x : tA : K..Ju) @(hd : x.A) @(tl : sci.List^ tA : K..x.Au) sci.List^ tA : K..x.Au

= λ(x : tA : K..Ju) λ(hd : x.A) λ(tl : sci.List^ tA : K..x.Au)
let result = ν(self ñ A = x.A;

head : @(_) self.A = λ_. hd
tail : @(_) (sci.List^ self.A) = λ_. tl)

in result)

Figure 20.1: A co-
variant list library
in pDOT

112 examples

20.3 mutually recursive modules

The second example, presented in Figure 20.2, illustrates pDOT’s
ability to use path-dependent types of arbitrary length. It formalizes
the compiler example from Chapter 16 in which the nested classes
Type and Symbol recursively reference each other.

ν(dc ñ types = ν(types ñ Type = µ (this : tsymb : dc.symbols.Symbolu) ;
newType : @(s : dc.symbols.Symbol) types.Type

= λ(s : dc.symbols.Symbol)
let result’ = ν(this ñ symb = s) in result’);

symbols = ν(symbols ñ Symbol = µ (this : ttpe : dc.types.Typeu) ;
newSymbol : @(t : dc.types.Type) symbols.Symbol

= λ(t : dc.types.Type)
let result’ = ν(this ñ tpe = t) in result’))

Figure 20.2: Mu-
tually recursive
types in a compiler
package: fully-
path-dependent
types

20.4 chaining methods with singleton types 113

20.4 chaining methods with singleton types

The last example focuses on pDOT’s ability to use singleton types as
they are motivated by Odersky and Zenger, (2005b). An example from
that paper introduces a class C with an incr method that increments
a mutable integer field x and returns the object itself (this). A class D
extends C and defines an analogous decr method. The example shows
how we can invoke a chain of incr and decr methods on an object of
type D using singleton types: if C.incr returned an object of type C
this would be impossible since C does not have a decr member, so the
method’s return type is this.type, a singleton type.

Our formalization of the example is displayed in Figure 20.3. Since
pDOT does not support mutation, our example excludes the mutation
side effect of the original example which is there to make the example
more practical.

let pkg = ν(p ñ C = µ (this : tincr : this.typeu) ;
D = µ (this : p.C^ tdecr : this.typeu) ;
newD : @(_) p.D = λ _.

let result = ν(this ñ incr = this; decr = this)
in result)

in let d = pkg.newD _
in d.incr.decr

Figure 20.3: Chain-
ing method calls
using singleton
types

21
T Y P E S A F E T Y

We implemented the type-safety proof of pDOT in Coq as an exten-
sion of the simple DOT soundness proof by Rapoport, Kabir, et al.,
(2017). Compared to the 2,051 LOC, 124 lemmas and theorems, and 65

inductive or function definitions in the simple DOT proof, the pDOT
Coq formalization consists of 7,343 LOC, 429 lemmas and theorems,
and 115 inductive or function definitions. This section presents an
overview of the key challenges and insights of proving pDOT sound.

The challenges of adapting the DOT soundness proof to pDOT can
be classified into three main themes:

– adapting the notion of inert types to pDOT,

– adapting the stratification of typing rules to pDOT, and

– adapting the canonical forms lemma to changes in the opera-
tional semantics in pDOT.

21.1 inert types in pdot

The purpose of inertness is to prevent the introduction of a possibly
undesirable subtyping relationship between arbitrary types S ă: U
arising from the existence of a type member that has those types as
bounds. If a variable x has type tA : S..Uu, then S ă: x.A and x.A ă: U,
so by transitivity, S ă: U.

As presented in Section 5.2, a DOT type is inert if it is a function
type or a recursive type µ (x : T) where T is a record type. A record type
is either a type-member declaration with equal bounds tA : U..Uu or
an arbitrary field declaration ta : Su. In DOT, this is sufficient to rule
out the introduction of new subtyping relationships.

inert T

record ta : Tu

record ta : p.typeu

record tA : U..Uu

record T

record U

record T ^ U

inert @(x : T)U

record T

inert µ (x : T)

(cf. Definition 2)

In pDOT, a new subtyping relationship S ă: U arises when a
path p, rather than only a variable x, has a type member tA : S..Uu.
Therefore, the inertness condition needs to enforce equal bounds on
type members not only at the top level of an object, but recursively
in any objects nested deeply within the outermost object. Therefore,
a field declaration ta : Tu is inert only if the field type T is also inert.
Moreover, since pDOT adds singleton types to DOT, the definition of
a record type is also extended to allow a field to have a singleton type.

definition 34 (Record Types in pDOT). A record type is an intersec-
tion of types each of which is either a field declaration ta : Tu where T is inert
or a singleton type, or a tight type declaration tA : U..Uu.

115

116 type safety

definition 35 (Inert Types in pDOT). A type U is inert if it is either
a function type or a recursive type µ (x : T) where T is a record type.

Both the DOT and pDOT preservation lemmas must ensure that
reduction preserves inertness of typing contexts.

aside : why we need the tight judgment This section mo-
tivates the need for the tight judgment that occurs in the Def-New

definition-typing rule (Figure 19.2). The reader may skip this section
as it explains the design of the type rules and not the pDOT proof.

In designing pDOT and its safety proof, we must ensure that reduc-
tion preserves inertness: that is, when γ | t ÞÝÑ γ1 | t1 there is an inert
typing environment Γ1 that is well-formed with respect to γ1 and in
which t1 has the required type (i. e. we need to be able to prove the
analogue of Lemma 20 (Value Typing)). In order to guarantee this,
we need to ensure that all well-typed values can be typed with an inert
type. As we will show now, if we omit the tight judgment from the
object-definition typing rule Def-New, there will be well-typed values
that do not have a precise inert type. The values might still have an
inert type under general typing but relying on such reasoning would
further complicate the soundness proof.

The object-definition typing rule Def-New requires that the type T
of an object ν(x : T)d be tight , i. e. that all type declarations of the
type (except those nested inside function types) have equal bounds.
Together with the pDOT definition-typing rules, this ensures that T
has the form of a concatenation of record types, and, due to tight ,

tight T

p.a; Γ $ d [p.a/y] : T [p.a/y]

p; Γ $ ta = ν(y : T)du :

ta : µ (y : T)u
(Def-New)

that each type declaration tA : T..Uu of that concatenation has equal
bounds (T = U).

Given that every record that declares a type member must be typed
with the Def-Typ rule, which requires tight bounds anyway, why do
we need this additional tightness restriction?

If we do not require the tightness restriction in object-definition
typing then there will exist well-typed objects ν(x : T)d whose precise
recursive types µ (x : T) are not inert, which would complicate the
soundness proof. Consider the following value:

ν(x : ta : µ (y : tA : y.type..x.a.typeu)u)
ta = ν(y : tA : y.type..x.a.typeu)

tA = y.typeuu

It cannot be typed with an inert type using the {}-I rule. Is this value
well-typed? If we remove the tightness condition, then it is:

x.a; Γ $ tA = x.a.typeu : tA : x.a.type..x.a.typeu Def-Typ

x; Γ $
!

a = ν(y : Tx.a
A y) tA = y.typeu

)

:
!

a : µ
(

y : Tx.a
A y

)) Def-New

$ ν(x)
!

a = ν(y : Tx.a
A y) tA = y.typeu

)

: µ
(

x :
!

a : µ
(

y : Tx.a
A y

))) {}-I

21.2 proof recipe for pdot 117

where we use the shorthand

Tx.a
A y = tA : y.type..x.a.typeu

The reason that this works is that the substitution of the self-variable
y with x.a in Def-New made the type Tx.a

A y have equal bounds, yielding
tA : x.a.type..x.a.typeu, and the Def-Typ typing went through.

To avoid this problem we must either prevent the above value from
being well-typed or change the definition of inertness to include the
above type. Since the latter would significantly complicate the inertness
definition which is supposed to be a simple syntactic property, we
chose the former: a check in the definition typing rules that object
types have tight bounds.

21.2 proof recipe for pdot

The DOT proof presented in Part I employs the proof recipe, a stratifi-
cation of the typing rules into multiple typing relations that rule out
cycles in a typing derivation, but are provably as expressive as the
general typing relation under the condition of an inert typing context.
Recall that besides the general typing relation, the proof uses three
intermediate relations:

– tight typing neutralizes the ă:-Sel and Sel-ă: rules that could see Section 5.3 for
tight typing in DOTintroduce bad bounds,

– invertible typing contains introduction rules that create more see Section 5.4 for
invertible typing in
DOT

complex types out of smaller ones, and

– precise typing contains elimination rules that decompose a type see Figure 5.2 for
precise typing in
DOT

into its constituents.

The language features that pDOT adds to DOT create new ways to
introduce cycles in a typing derivation. The stratification of the typing
rules needs to be extended to eliminate these new kinds of cycles.

21.2.1 Overview of Extended Proof Recipe

The notion of aliased paths is inherently symmetric: if p and q are
aliases for the same object, then any term with type p.A also has type
q.A and vice versa. This is complicated further because the paths p
and q can occur deeply inside some complex type, and whether a
term has such a type should be independent of whether the type is
expressed in terms of p or q. Another complicating factor is that a
prefix of a path is also a path, which may itself be aliased. For example,
if p is an alias of q and q.a is an alias of r, then by transitivity, p.a
should also be an alias of r.

The pDOT proof eliminates cycles due to aliased paths by breaking
the symmetry of path aliasing. When p and q are aliased, either

118 type safety

Γ $ p : q.type or Γ $ q : p.type. The typing rules carefully distinguish
these two cases, so that for every pair p, q of aliased paths introduced
by a typing declaration, we know whether the aliasing was introduced
by the declaration of p or of q. A key lemma then proves that if we
have any sequence of aliasing relationships

p0 „ p1 „ ¨ ¨ ¨ „ pn

where for each i, either

Γ $ pi : pi+1.type or Γ $ pi+1 : pi.type

we can reorder the replacements so that the ones of the first type all
come first and the ones of the second type all come afterwards. More
precisely, we can always find some “middle” path q such that

Γ $ p0 : q.type and Γ $ pn : q.type

(in degenerate cases, the middle path q might actually be p0 or pn).
Therefore, we further stratify the proof recipe into two typing judg-
ments the first of which accounts for the Snglpq-ă: rule, and the
second for the Snglqp-ă: rule. This eliminates cycles in a typing
derivation due to aliased paths, but the replacement reordering lemma
ensures that it preserves expressiveness.

Another new kind of cycle is introduced by the field elimination
rule Fld-E and the field introduction rule Fld-I that is newly added
in pDOT. This cycle can be resolved in the same way as other cycles
in DOT, by stratifying these rules in two different typing relations.

The final stratification of the pDOT typing rules requires seven
typing relations rather than the four required in the soundness proof
for DOT. General and tight typing serve the same purpose as in the
DOT proof, but pDOT requires three elimination and two introduction
typing relations.

Table 21.1 shows which typing rules of pDOT are handled by each
of the auxiliary typing relations which are introduced in the next
sections.

Relation Type rules Inlined subtyping rules (Sub +. . .)

Precise
$! Var, Fld-E , Rec-E And1-ă:, And2-ă:

$!! Sngl-E

$!!! Sngl-Trans

Invertible $¡ &-I Snglpq-ă: , ă:-And, Top, All-ă:-All, Fld-ă:-Fld, Typ-ă:-Typ

$¡¡ &-I, Fld-I , Rec-I Snglqp-ă: , ă:-And, ă:-Sel

Tight $# all all, tight versions of Sel and Sngl rules

General $ all all

Table 21.1: Auxil-
iary typing rela-
tions that make up
the proof recipe of
pDOT

21.2 proof recipe for pdot 119

Precise typing for
values
Γ $! v : T

Γ, x : T $ t : U x R fv(T)

Γ $! λ(x : T) t : @(x : T)U
(All-I!)

x ; Γ, x : T $ d : T

Γ $! ν(x : T)d : µ (x : T)
({}-I!)

Precise-I typing
Γ $! p : T

Γ(x) = T

Γ $! x : T
(Var!)

Γ $! p : µ (z : T)

Γ $! p : T [p/z]
(Rec-E!)

Γ $! p : T^U

Γ $! p : T
(And1-E!)

Γ $! p : T^U

Γ $! p : U
(And2-E!)

Γ $! p : ta : Tu

Γ $! p.a : T
(Fld-E!)

Precise-II typing
Γ $!! p : T

Γ $! p : T

Γ $!! p : T
(Path!!)

Γ $!! p : q.type Γ $!! q.a

Γ $!! p.a : q.a.type
(Sngl-E!!)

Precise-III typing
Γ $!!! p : T

Γ $!! p : T

Γ $!!! p : T
(Path!!!)

Γ $!! p : q.type Γ $!!! q : U

Γ $!!! p : U
(Sngl-Trans!!!)

Figure 21.1: Precise
typing in pDOT

21.2.2 Typing Judgments for pDOT’s Proof Recipe

This section introduces the auxiliary typing relations that build up
pDOT’s proof recipe.

21.2.2.1 Three Levels of Elimination (Precise Typing) Rules

The precise typing rules (responsible for type elimination, such as
Rec-E) are presented in Figure 21.1. The rules are divided into three
stages that closely correspond to store lookup. store lookup is

defined in
Figure 19.6

The precise-I type represents a path’s exact type as assigned by the
environment (modulo possible recursion and intersection elimination).
If a path is a variable x, precise-I typing is the same as DOT’s pre-
cise typing. Additionally, precise-I typing can perform field selection see Figure 5.2 for

precise DOT typing(Fld-E!): if x’s precise-I type is the recursive type

µ (x : ¨ ¨ ¨ ^ ta1 : µ (y : ¨ ¨ ¨ ^ tan : Tnu ^ . . .)u ^ . . .)

120 type safety

then the precise-I type of x.a1. . . . an returns the type Tn that is nested
deeply in x’s type. Precise-I typing mimics the Lookup-Step-Var and
Lookup-Step-Val path-lookup rules.

The purpose of precise-II typing is to do field selection on paths
that have singleton types. If the typing environment assigns a sin-
gleton type to a path p then precise-II typing enables field selections
on p. In particular, if p has q.type and q.a is typeable then under
precise-II typing p.a has q.a.type (Sngl-E!!). This corresponds to the
Lookup-Step-Path path-lookup rule.

Precise-III typing transitively follows a path’s aliases through the
typing environment. If a path p has a precise-II type q.type (i. e. p
aliases q) then precise-III typing allows p to be typechecked with any
of q’s precise-III types. Precise-III typing is similar to the transitive
closure of value lookup, realized by the Lookup-Trans lookup rule.

Obtaining a path’s precise-III type is the ultimate goal of the proof
recipe. If p has type T in precise-III typing, we know that either the
environment directly assigns p the type T or that p is assigned a
singleton type q, and by recursively following path aliases starting
with q we eventually arrive at T. More precisely, if Γ $!!! p : T, then
one of the following is true:

1. Γ $! p : T, i.e. T is the most precise type that Γ assigns to p
(modulo possible recursion and intersection elimination), or

2. – p = p1.b (i.e. p1 is a prefix of p) and

– Γ $! p1 : q.type (i.e. Γ $!! p1.b : q.b.type), and either

– T = q.b.type, or

– Γ $!!! q.b : T.

Precise typing is the only place in the proof recipe that encodes the
Sngl-Trans, Sngl-E, and Fld-E typing rules, along with the explicit
elimination rules such as Rec-E.

21.2.2.2 Two Levels of Introduction (Invertible Typing) Rules

Just like in DOT, type-introduction rules take place in invertible typing.
Hoewever, pDOT’s invertible typing is further split into two typing
judgments. The reason is that the path-replacement subtyping rules
Snglpq-ă: and Snglqp-ă: introduce new possibilities for cyclic typing
derivations. For example, if Γ $ p : q.type then we want to rule out an
infinite derivation that changes back and forth between applying the
Snglpq-ă: and Snglqp-ă: rules:

. . .

Γ $ r : T
Γ $ p : q.type

Γ $ T ă: T [q/p]
Snglpq-ă:

Γ $ r : T [q/p]
Sub

Γ $ p : q.type
Γ $ T [q/p] ă: T

Snglqp-ă:

Γ $ r : T
Sub

21.2 proof recipe for pdot 121

This derivation is infinite because it keeps alternating between typing r
with T and T [q/p].

In order to avoid such infinite derivations we restrict the direction in
which path replacements can be performed. Specifically, we stratify in-
vertible typing into two stages: one stage can only apply the Snglpq-ă:
replacement, the other can only apply the Snglqp-ă: replacement.
Invertible-I typing, denoted Γ $¡ p : T, contains introduction rules and
inlined versions of the Snglpq-ă: subtyping rule and is presented in
Figure 21.2. Invertible-II typing, denoted Γ $¡¡ p : T, contains inlined
versions of the Snglqp-ă: subtyping rule and is shown in Figure 21.3.

21.2.2.3 Tight Typing Rules

In DOT, new subtyping relationships are introduced through the
Sel-ă: DOT and ă:-Sel DOT subtyping rules that allow us to use
variable-dependent types. The ability to use such dependent types
is restricted in tight typing, which is equivalent to general typing

Γ $! x : tA : T..Tu

Γ $# x.A ă: T
(Sel-ă:-# DOT)but does not admit the introduction of new subtyping relationships:

the tight versions of the above rules, Sel-ă:-# DOT and ă:-Sel-# DOT,
require tight bounds and precise typing in their premises.

pDOT’s tight typing, shown in Figure 21.4, has to generalize DOT’s
tight typing to paths for which it uses the third level of precise typing
introduced in Section 21.2.2.1.

Γ $!!! p : tA : T..Tu

Γ $# p.A ă: T
(Sel-ă:-#)

Additionally to path-dependent types, pDOT has a second form
of dependent types: singleton types. The subtyping rules related to
singleton types, Snglpq-ă: and Snglqp-ă:, are handled in the same
way as ă:-Sel and Sel-ă:. We define the tight versions of these rules,
Snglpq-ă:-# and Snglqp-ă:-#,

Γ $!!! p : q.type

Γ $# T ă: T [q/p]
(Snglpq-ă:-#)

with restricted precise-typing premises.

21.2.3 Proof Recipe Lemmas

Given a typing Γ $ p : T in an inert context Γ, the proof recipe works
as follows:

1. prove that p’s general type T is equal to its tight type, i. e.

Γ $# p : T

2. prove that p’s tight type is equal to its invertible-¡¡ type T, i. e.

Γ $¡¡ p : T

3. establish a relationship between p’s invertible-II type T and its
invertible-I type T1, i. e.

Γ $¡ p : T1

122 type safety

Invertible-I path typ-
ing
Γ$¡ p : T

Γ $!!! p : T

Γ$¡ p : T
(Path-¡)

Γ$¡ p : ta : Su Γ $# S ă: T

Γ$¡ p : ta : Tu
(Fld-ă:-¡)

Γ$¡ p : tA : T..Uu
Γ $# T1 ă: T Γ $# U ă: U1

Γ$¡ p :

A : T1..U1
(

(Typ-¡)

Γ$¡ p : @(x : S) T
Γ $# S1 ă: S Γ, x : S1 $ T ă: T1

Γ$¡ p : @(x : S1) T1

(All-¡)

Γ$¡ p : S Γ$¡ p : T

Γ$¡ p : S^ T
(And-¡)

Γ$¡ p : T

Γ$¡ p : J
(Top-¡)

Γ$¡ r : µ (x : T)
Γ $! p : q.type Γ $!! q

Γ$¡ r : µ (x : T) [q/p]

(Sngl-Rec-¡)

Γ$¡ r : r1.A
Γ $! p : q.type Γ $!! q

Γ$¡ r : r1.A [q/p]

(Sngl-Sel-¡)

Γ$¡ r : r1.type
Γ $! p : q.type Γ $!! q

Γ$¡ r : r1.type [q/p]

(Sngl-Sngl-¡)

Invertible-I value
typing
Γ$¡ v : T

Γ $! v : T

Γ$¡ v : T
(Path-v-¡)

Γ$¡ v : @(x : S) T
Γ $# S1 ă: S Γ, x : S1 $ T ă: T1

Γ $ v : @(x : S1) T1
(All-v-¡)

Γ$¡ v : S Γ$¡ v : T

Γ$¡ v : S^ T
(And-v-¡)

Γ$¡ v : T

Γ$¡ v : J
(Top-v-¡)

Γ$¡ v : µ (x : T)
Γ $! p : q.type Γ $!! q

Γ$¡ v : µ (x : T) [q/p]

(Rec-Sngl-v-¡)

Figure 21.2:
Invertible-I typing
in pDOT

21.2 proof recipe for pdot 123

Invertible-II path typ-
ing
Γ $¡¡ p : T

Γ$¡ p : T

Γ $¡¡ p : T
(Path-¡¡)

Γ $¡¡ p : S Γ $¡¡ p : T

Γ $¡¡ p : S^ T
(And-¡¡)

Γ $¡¡ p : T [p/x]

Γ $¡¡ p : µ (x : T)
(Rec-I-¡¡)

Γ $¡¡ p.a : T

Γ $¡¡ p : ta : Tu
(Fld-I-¡¡)

Γ $¡¡ p : T
Γ $! q : tA : T..Tu

Γ $¡¡ p : q.A
(Typ-Sel-¡¡)

Γ $¡¡ r : µ (x : T)
Γ $! p : q.type Γ $!! q

Γ $¡¡ r : µ (x : T) [p/q]

(Sngl-Rec-¡¡)

Γ $¡¡ r : r1.A
Γ $! p : q.type Γ $!! q

Γ $¡¡ r : r1.A [p/q]

(Sngl-Sel-¡¡)

Γ $¡¡ r : r1.type
Γ $! p : q.type Γ $!! q

Γ $¡¡ r : r1.type [p/q]

(Sngl-Sngl-¡¡)

Invertible-II value
typing
Γ $¡¡ v : T

Γ$¡ v : T

Γ $¡¡ v : T
(Path-¡¡-v)

Γ $¡¡ v : S Γ $¡¡ p : T

Γ $¡¡ v : S^ T
(And-¡¡-v)

Γ $¡¡ v : T
Γ $! q : tA : T..Tu

Γ $¡¡ v : q.A
(Typ-Sel-¡¡-v)

Γ $¡¡ v : µ (x : T)
Γ $! p : q.type Γ $!! q

Γ $¡¡ v : µ (x : T) [p/q]

(Sngl-Rec-¡¡-v)

Γ $¡¡ v : T [p/x]

Γ $¡¡ v : µ (x : T)
(Rec-I-¡¡-v)

Γ $¡¡ v : r1.A
Γ $! p : q.type Γ $!! q

Γ $¡¡ v : r1.A [p/q]

(Sngl-Sel-¡¡-v)

Figure 21.3:
Invertible-II typing
in pDOT

124 type safety

Tight term typing
Γ $# t : T

Γ(x) = T

Γ $# x : T
(Var#)

Γ, x : T $ t : U x R fv(T)

Γ $# λ(x : T) t : @(x : T)U
(All-I#)

Γ $# p : @(z : S) T Γ $# q : S

Γ $# p q : T [q/z]
(All-E#)

x ; Γ, x : T $ d : T

Γ $# ν(x : T)d : µ (x : T)
({}-I#)

Γ $# p : ta : Tu

Γ $# p .a : T
(Fld-E#)

Γ $# p.a : T

Γ $# p : ta : Tu
(Fld-I#)

Γ $# t : T
Γ, x : T $ u : U x R fv(U)

Γ $# let x = t in u : U
(Let#)

Γ $# p : q.type Γ $ q : T

Γ $# p : T
(Sngl-Trans#)

Γ $# p : q.type Γ $# q.a

Γ $# p.a : q.a.type
(Sngl-E#)

Γ $# p : T [p/x]

Γ $# p : µ (x : T)
(Rec-I#)

Γ $# p : µ (x : T)

Γ $# p : T [p/x]
(Rec-E#)

Γ $# p : T Γ $# p : U

Γ $# p : T ^ U
(&-I#)

Γ $# t : T Γ $ T ă: U

Γ $# t : U
(Sub#)

Tight subtyping
Γ $# T ă: U

Γ $# T ă: J (Top#)

Γ $# K ă: T (Bot#)

Γ $# T ă: T (Refl#)

Γ $# S ă: T Γ $# T ă: U

Γ $# S ă: U
(Trans#)

Γ $# T ^ U ă: T (And1-ă:#)

Γ $# T ^ U ă: U (And2-ă:#)

Γ $# S ă: T Γ $# S ă: U

Γ $# S ă: T ^ U
(ă:-And#)

Γ $!!! p : tA : S..Su

Γ $# S ă: p .A
(ă:-Sel#)

Γ $!!! p : tA : S..Su

Γ $# p .A ă: S
(Sel-ă:#)

Γ $!!! p : q.type Γ $!! q

Γ $# T ă: T [q/p]
(Snglpq-ă:#)

Γ $!!! p : q.type Γ $!! q

Γ $# T ă: T [p/q]
(Snglqp-ă:#)

Γ $# T ă: U

Γ $# ta : Tu ă: ta : Uu

(Fld-ă:-Fld#)

Γ $# S2 ă: S1 Γ $# T1 ă: T2

Γ $# tA : S1..T1u ă: tA : S2..T2u

(Typ-ă:-Typ#)

Γ $# S2 ă: S1

Γ, x : S2 $ T1 ă: T2

Γ $# @(x : S1) T1 ă: @(x : S2) T2
(All-ă:-All#)

Figure 21.4: Tight
typing for pDOT

21.2 proof recipe for pdot 125

4. establish a relationship between p’s invertible-I type T1 and its
precise-III type T2, i. e.

Γ $!!! p : T2

This type is the type that is directly assigned to p (or its aliases)
by Γ, modulo recursion and intersection elimination.

The lemmas that establish the proof recipe have to be proved in
reverse order and this is how we present them below. Note that
except for tight typing, each of the proof-recipe relations comes in two
versions: for paths and values. We present only the lemmas for paths;
the formulations for values are similar and also simpler since there
are fewer rules that apply to values than to paths.

21.2.3.1 From Invertible-I to Precise-III Typing

The lemmas in this section are specialized to function, record, and
singleton types. The proof-recipe lemmas for values are specialized to
function and object types but we omit them here because the function-
type-related lemmas are the same as for paths, and the reasoning
about object types is similar to the reasoning for singleton types.

function types To convert a function type from invertible-I typ-
ing into precise-III typing, we use the following lemma. inert Γ

Γ $¡ p : @(x : T)U

Γ $!!! p : @(x : T1)U1

Γ $# T ă: T1

Γ, x : T $# U1 ă: U
($¡ to $!!! @)

lemma 36 ($¡ to $!!! @). If Γ $¡ p : @(x : T)U and Γ is inert then there
exist types T1 and U1 such that Γ $# T ă: T1, Γ, x : T $# U1 ă: U, and
Γ $!!! p : @(x : T1)U1.

For the proof recipe, we do not need to further convert p’s type into
precise-II and -I typings. However, these typing relations are needed
to prove the lemmas of the proof recipe.

record types The following lemma converts from an invertible-I
type declaration to a precise-III type: inert Γ

Γ $¡ p : tA : S..Uu

Γ $!!! p : tA : T..Tu

Γ $# S ă: T ă: U
($¡ to $!!! tAu)

lemma 37 ($¡ to $!!! tAu). If Γ $¡ p : tA : S..Uu and Γ is inert then
there exists a type T such that Γ $!!! p : tA : T..Tu, Γ $# S ă: T and
Γ $# T ă: U.

singleton types If a path has a precise-III singleton type T!!!

then invertible-I typing can introduce pq replacements to that type,
yielding a type T¡. Subsequent invertible-II typing can introduce qp
replacements to T¡, yielding a type T¡¡. To reason about the exact
relationship between T!!!, T¡, and T¡¡, we distinguish between pq- and
qp-replacements, defined as follows.

Γ $!! q

Γ $! p : q.type

Γ $ T ù T [q/p]

definition 38. If Γ $! p : q.type then replacing an occurrence of the path
p with q in a type is a pq-replacement, and replacing an occurrence of q
with p in a type is a qp-replacement.

126 type safety

We denote the fact that U is the result of a pq replacement in T as

Γ $ T ù U

Additionally, if Γ $ T ù U and Γ $ S ù U we will write

Γ $ T ù U ø S

Finally, we denote the reflexive, transitive closure of ù as ù˚.
The following lemma establishes the relationship between a path’s

invertible-I singleton type and its precise-III type.inert Γ

Γ $¡ p : q.type

Γ $!!! p : q1.type
Γ $ q1.type ù q.type

($¡ to $!!! @)

lemma 39 ($¡ to $!!! _.type). If Γ $¡ p : q.type and Γ is inert then there
exists a path q1 such that Γ $!!! p : q1.type and Γ $ q1.type ù q.type.

21.2.3.2 From Invertible-II to Invertible-I Typing

This section presents the conversions from invertible-II to invertible-I
typing for paths of function, record, and singleton types.

function types Invertible-II typing does not have rules for func-
tion types. Therefore, if a path has a function type in invertible-II
typing it must have had the same type in invertible-I typing:inert Γ

Γ $¡¡ p : @(x : T)U

Γ $¡ p : @(x : T)U
($¡¡ to $¡ @)

lemma 40 ($¡¡ to $¡ @). If Γ $¡¡ p : @(x : T)U and Γ is inert then
Γ $¡ p : @(x : T)U.

record types Similarly, invertible-II typing does not affect the
invertible-I type of a path that is typed with a type declaration:

inert Γ

Γ $¡¡ p : tA : S..Uu

Γ $¡ p : tA : S..Uu

($¡¡ to $¡ tAu)

lemma 41 ($¡¡ to $¡ tAu). If Γ $¡¡ p : tA : S..Uu and Γ is inert then
Γ $¡ p : tA : S..Uu.

singleton types Invertible-II typing may introduce qp replace-
ments to singleton types. Therefore, if

Γ $¡¡ p : q.type

then p must have had a singleton type q1.type in invertible-I typing:

Γ $¡ p : q1.type

such that q.type could be obtained from q1.type through a sequence
of qp replacements. Since a qp replacement in a singleton type is the
inverse of a pq replacement6 we can say that q1.type was obtained from6 note that

q.b.type [p/q] [q/p] =
q.b.type

q.type through a series of pq replacements:

Γ $ q.type ù˚ q1.type

21.2 proof recipe for pdot 127

lemma 42 ($¡¡ to $¡ _.type). If Γ is an inert context and Γ $¡¡ p : q.type
then there exists a path q1 such that Γ $¡ p : q1.type and Γ $ q.type ù˚

q1.type.

inert Γ

Γ $¡¡ p : q.type

Γ $¡ p : q1.type
Γ $ q.type ù˚ q1.type

($¡¡ to $¡ _.type)

21.2.3.3 From Tight to Invertible-II Typing

Given the tight type of a path, we can convert it into an invertible-II
type (cf. Theorem 10 ($# to $¡)):

lemma 43 ($# to $¡¡). If Γ $# p : T and Γ is inert then Γ $¡¡ p : T.
inert Γ Γ $# p : T

Γ $¡¡ p : T
($# to $¡¡)Just as in DOT, to prove this lemma we need to first show that

invertible-II typing is closed under tight subtyping: inert Γ Γ $¡¡ p : T

Γ $# T ă: U

Γ $¡¡ p : U
($¡¡ ă: Closure)

lemma 44 (Invertible-II ă: Closure). If Γ is inert, Γ $¡¡ p : T, and
Γ $# T ă: U then Γ $¡¡ p : U.

The proof of the last lemma is by induction on the tight-subtyping
derivation. The Snglpq-ă:-# and Snglqp-ă:-# induction cases require
the proofs of the following replacement closure lemmas:

lemma 45 (Invertible-II qp-Replacement Closure). If Γ is inert, Γ $¡¡

r : T, Γ $!!! p : q.type, q has a precise-II type, and T contains a path q, then
Γ $¡¡ r : T [p/q].

inert Γ Γ $!! q

Γ $!!! p : q.type
Γ $¡¡ r : T

Γ $¡¡ r : T [p/q]
($¡¡ qp Closure)Since invertible-II typing explicitly inlines the Snglqp-ă:-# typ-

ing rule which performs qp-replacement, the proof of this lemma
is straightforward. However, the proof of the analogous lemma for
the reverse replacement direction (pq) is more challenging. Before
presenting it we first need to prove that invertible-I typing is closed
under pq replacement since it explicitly inlines the Snglpq-ă:-# rule:

inert Γ Γ $!! q

Γ $!!! p : q.type
Γ $¡ r : T

Γ $¡ r : T [q/p]
($¡ pq Closure)

lemma 46 (Invertible-I pq-Replacement Closure). If Γ is inert, Γ $¡

r : T, Γ $!!! p : q.type, q has a precise-II type and T contains a path p, then
Γ $¡ r : T [q/p].

Using this lemma it is possible to prove the pq-replacement closure
for invertible-II typing:

lemma 47 (Invertible-II pq-Replacement Closure). If Γ is inert, Γ $¡¡

r : T, Γ $!!! p : q.type, q has a precise-II type, and T contains a path p, then
Γ $¡¡ r : T [q/p].

inert Γ Γ $!! r

Γ $!!! p : q.type
Γ $¡¡ r : T

Γ $¡¡ r : T [q/p]
($¡¡ pq Closure)The proof is by induction on the invertible-II typing derivation. To

illustrate a point of difficulty in the proof consider, for instance, the
Sngl-Sel-¡¡ induction case where a path r’s type T is derived from a
qp-replacement. We want to prove that if we apply a pq-replacement
(possibly of other paths p1 and q1) to T, yielding a type T1, then
Γ $¡¡ r : T1. However, there is no invertible-II type rule that allows

Γ $!! q

Γ $¡¡ r : r1.A

Γ $! p : q.type

Γ $¡¡ r : r1.A [p/q]
(Sngl-Sel-¡¡)

pq replacements, so we need to show that the same type T1 could
have been derived if we had applied the pq-replacement before the
qp-replacement that yielded T. We omit the details of this proof here
and refer the interested reader instead to the Coq proof.

128 type safety

21.2.3.4 From General to Tight Typing

The translation from general into tight typing is the start of the proof
recipe. Recall that to prove that DOT’s general typing implies tight
typing in Theorem 6 ($ to $#), we needed to be able to “replace”
the restricted precise-typing premise of Sel-ă: DOT with a more gen-
eral tight-typing premise, for which we proved Lemma 7 (Sel-ă:-#
Replacement) and Lemma 8 (Sel-ă:-# Premise).

In pDOT, we have to do the same:inert Γ

Γ $# p : tA : S..Uu

Γ $!!! p : tA : T..Tu

(Sel-ă:-# Premise)

lemma 48 (Sel-ă:-# Premise). If Γ is an inert context, then if Γ $#

p : tA : S..Uu, then there exists a type T such that Γ $!!! p : tA : T..Tu,
Γ $# S ă: T, and Γ $# T ă: U.

Proof. The proof of this lemma uses the proof recipe lemmas de-
scribed in the previous sections. It first converts p’s tight-typing type
tA : S..Uu to the same invertible-II type using Lemma 43 and to the
same invertible-I type using Lemma 41. It then uses Lemma 37 to
arrive at a precise-III type tA : T..Tu for p.

lemma 49 (Sel-ă:-# Replacement). If Γ is an inert context, then if
Γ $# p : tA : S..Uu, then Γ $# S ă: p .A and Γ $# p .A ă: U.

inert Γ

Γ $# p : tA : S..Uu

Γ $# S ă: p.A ă: U
(Sel-ă:-# Replacement) Proof. Directly follows from Lemma 48.

Similarly to strengthening the precise premises of the Sel tight-
subtyping rules, we have to strengthen the precise-typing premises to
tight-typing premises for the Snglpq-ă: and Snglqp-ă: rules:

lemma 50 (Sngl-ă:-# Premise). If Γ is an inert context, then if Γ $#

p : q.type where Γ $# q, then there exists a path q1 such that

– Γ $!! q1,

– Γ $!!! p : q1.type, and

– Γ $# q1.type ă: q.type.

inert Γ Γ $# q

Γ $# p : q.type

Γ $!!! p : q1.type
Γ $# q1.type ă: q.type

Γ $!! q1

(Sngl-ă: Premise)

Proof. By Lemma 43 ($# to $¡¡) p’s tight type is the same as its
invertible-II type, i. e.

Γ $¡¡ p : q.type

By Lemma 42 ($¡¡ to $¡ _.type) and Lemma 39 ($¡ to $!!! _.type),

Γ $!!! p : q1.type

where
Γ $ q.type ù˚ q2.type ˚ø q1.type

which allows us to prove that Γ $# q1.type ă: q2.type ă: q.type. Note
that the actual proof needs to use stronger versions of Lemma 42 and
Lemma 39 in order to prove that q1 is typeable; however, we leave
these details out to just display the main idea of the proof.

21.3 typed-paths environments 129

$ ∅♦ (Tp-Empty)

$ Γ♦ x R fv(Γ) @b, q,
Γ, x : T $! x.b : q.type
DU, Γ, x : T $!! q : U

$ Γ, x : T♦
(Tp)

Figure 21.5:
Typed-paths
environments

The proof of the next lemma immediately follows from Lemma 50.

lemma 51 (Sngl-ă:-# Replacement). If Γ is an inert context, then if
Γ $# p : q.type where Γ $# q, then for any type T that contains a path p,
Γ $# T ă: T [q/p], and for any type U that contains a path q, Γ $# U ă:
U [p/q] .

inert Γ Γ $# q

Γ $# p : q.type

Γ $# T ă: T [q/p]

Γ $# U ă: U [p/q]
(Sngl-ă:-# Replacement)21.3 typed-paths environments

A pDOT type can depend on paths rather than just variables, and
the type makes sense only if the paths within it make sense, i. e. if
all paths have a type. To ensure that all paths in a type are typeable,
we introduce the notion of typed-paths environments. The typed-path
property requires that any path that appears in a type should itself also
be typeable in the same typing context. Without this property, it would
be possible for the typing rules to derive types for ill-formed paths,
and there could be paths that have types but do not resolve to any
value during program execution. We will need the typed-path property
when we formulate the canonical-forms, progress, and preservation
lemmas.

The precise definition of typed-path environments, denoted $ Γ♦, is
given in Figure 21.5. The Wt rule defines how to extend a typed-path
environment Γ with a type T to maintain the typed-paths property.
Specifically, it considers all the paths (x.b) that are introduced by T
and, if a path has a singleton type q.type, requires q to be precisely
typeable in an environment.

How does the rule retrieve all paths that are introduced by T? For
that we just need to consider all precise-I typings of paths that start see Figure 21.1 for

precise typingwith x (recall that precise-I typing gives us information about the exact
type, modulo recursion and intersection elimination, that an environ-
ment assigns to a path). For example, if T = µ (y : ta : y.a.a.typeu),
there are the following precise-I typings that T introduces:

Γ, x : T $! x : µ (y : ta : y.a.a.typeu) (21.1)

Γ, x : T $! x : ta : x.a.a.typeu (21.2)

Γ, x : T $! x.a : x.a.a.type (21.3)

The only typing applicable to our definition is (21.3).
Finally, how does the rule ensure that the paths in the above single-

ton types are typeable? For that it is not sufficient to require precise-I

130 type safety

typing: precise-I typing only allows us to do field selection on paths
that have recursive or record types, whereas we also need to do field
selection on paths that have singleton types. In the above example, the
path x.a.a has a precise-II type but no precise-I type.

Note that we also want our type system to allow paths that have
been accessed through precise-III typing, which transitively follows
path aliases in the environment. However, it can be easily shown
that every precise-III typeable path also has a precise-II typeable
path, which is what we require in the above definition of typed-paths
environments.

21.4 canonical forms in pdot

As described in Section 5.5, the DOT proof depends on canonical
forms lemmas that state that if a variable has a function type, then it
resolves to a corresponding function at execution time, and if it has a
recursive object type, then it resolves to a corresponding object. The
change from DOT to pDOT involves several changes to Canonical
Forms.

Two changes follow directly from pDOT’s operational semantics.
The DOT canonical forms lemmas apply to variables. Since the pDOT
Apply reduction rule applies to paths rather than variables, the canon-
ical forms lemma is needed for paths. Since paths are normal forms
in pDOT and there is no Proj reduction rule for them, on the surface,
pDOT needs a canonical forms lemma only for function types but
not for object types. However, to reason about a path with a function
type, we need to reason about the prefixes of the path, which have
an object type. Therefore, the induction hypothesis in the canonical
forms lemma for function types must still include canonical forms for
object types. Moreover, since pDOT adds singleton types to the type
system, the induction hypothesis needs to account for them as well.

A more subtle but important change is that lookup of a path in
an execution environment is a recursive operation in pDOT, and
therefore its termination cannot be taken for granted. An infinite
loop in path lookup would be a hidden violation of progress for
function application, since the Apply reduction rule steps only once
path lookup has finished finding a value for the path. Therefore, the
canonical forms lemma proves that if a path has a function type,
then lookup of that path does terminate, and the value with which it
terminates is a function of the required type. The intuitive argument
for termination requires connecting the execution environment with
the typing environment: if direct lookup of path p yields another path
q, then the context assigns p the singleton type q.type. But in order for
p to have a function type, there cannot be a cycle of paths in the typing
context (because a cycle would limit p to have only singleton types),

21.4 canonical forms in pdot 131

and therefore there cannot be a cycle in the execution environment.
The statement of the canonical forms lemma is:

inert Γ γ : Γ $ Γ♦

Γ $ p : @(x : T)U

γ $ p ˚ λ(x : T1) t

Γ $ T ă: T1

Γ, x : T $ t : U
(Canonical Forms @)

lemma 52 (Canonical Forms for Functions). Let γ be a store and Γ
be an inert, typed-paths environment such that γ : Γ. If Γ $ p : @(x : T)U
then there exists a type T1 and a term t such that

1. γ $ p ˚λ(x : T1) t,

2. Γ $ T ă: T1, and

3. Γ, x : T $ t : U.

This simple statement hides an intricate induction hypothesis and a
long, tedious proof, since it needs to reason precisely about function,
object, and singleton types and across all seven typing relations in the
stratification of typing. We describe the key lemmas that are necessary
for this proof below.

21.4.1 Canonical Forms Proof

One difficulty in proving Canonical Forms for pDOT is to establish a
correspondence between a typing environment and a store. In DOT, if
a store γ is well-formed with respect to a typing environment Γ (γ : Γ),
then it immediately follows that any variable that has a type in Γ is
mapped to a value in γ. We would like the same property for paths:
if Γ $ p then we would like there to exist a value v of the same type
such that γ $ p ˚ v. However, there might not be such a value: it
is possible that p cyclically references other paths. Fortunately, since
we only need a canonical-forms lemma for functions, we can prove a
more restricted form of the corresponding-types lemma for function
types. We split this lemma into two. The first one states that if a path p
has a function type then p looks up to a value in the store.

lemma 53 (Corresponding Values for Functions). Suppose that a store
γ is well-formed with respect to an inert, typed-paths environment Γ, and
that Γ assigns type @(x : T)U to a path p, i. e. Γ $!!! p : @(x : T)U . Then
there exists a value v that is assigned to p by the store γ, i. e. γ $ p ˚ v.

inert Γ

γ : Γ $ Γ♦

Γ $!!! p : @(x : T)U

γ $ p ˚ v
(Corresp. Values @)

The purpose of the second lemma is to show that if a path p has a
function type and looks up to a value v in the store (as established
by the previous lemma) then v has the same type as p. To prove that
we state a more general lemma. It says that store lookup preserves
function types:

inert Γ

γ : Γ $ Γ♦

γ $ s ˚ s1

Γ $ s : @(x : T)U

Γ $ s1 : @(x : T)U
(Corresp. Types @)

lemma 54 (Corresponding Types for Functions). Suppose that a store
γ is well-formed with respect to an inert, typed-paths envrionment Γ, and
that Γ assigns type @(x : T)U to a stable term s (recall that a stable term is
a path or a value), i. e. Γ $ s : @(x : T)U, and s looks up to s1 in the store,
i. e. γ $ s ˚ s1. Then s1 has the same type as s, i. e. Γ $ s1 : @(x : T)U.

132 type safety

We present the main lemmas necessary to prove the above two.
The following lemma states that if a path p has a precise-III function

type T then p either has type T under precise-II typing, or p aliases
another path q that has T under precise-II typing.

lemma 55. If Γ is an inert environment and Γ $!!! p : @(x : T)U then
either

– Γ $! p : @(x : T)U, or

– there exists a path q such that Γ $!!! p : q.type and Γ $! q : @(x : T)U.

Proof. By induction on the precise-III typing derivation of p.

This simple lemma states that opening a recursive type in the typing
environment does not affect the typing of a term.

lemma 56. If Γ, x : µ (x : U) $ t : T then Γ, x : U $ t : T.

The following lemma establishes a correspondence between the
precise-I type of a path and the term that it looks up to in the store.

lemma 57 (Lookup Preservation I). Let γ be a store that is well-formed
with respect to an inert, typed-paths envrionment Γ, and for some path p,
stable term s, and type U,

– γ $ p s

– Γ $! p : U.

Then one of the following is true:

1. s is a function value of type U,

2. there exist types T, S, W and definitions d such that

– s is an object ν(S : d),

– Γ $! p : µ (y : T),

– p; Γ $ d [p/y] : S [p/y], and

– Γ $ S ù˚ W ˚ø T for some type W, or

3. there exist paths q, r, and r1 such that

– t = q,

– U = r.type, and

– Γ $ q.type ù˚ r1.type ˚ø r.type

Proof. The proof is by induction on the derivation of γ : Γ. The empty-see Definition 16 for
the definition of γ : Γ environment case cannot happen since a path cannot be typed in an

21.4 canonical forms in pdot 133

empty environment. In the inductive case, suppose that p = xp.b; then
we have

inert (Γ, x : T) (21.4)

γ : Γ (21.5)

$ Γ, x : T (21.6)

Γ $ v : T (21.7)

Γ, x : T $! xp.b : U (21.8)

γ, x ÞÑ v $ xp.b t (21.9)

We consider two cases depending on whether x is equal to xp.

Case 1: x = xp.
We proceed by induction on the lookup-derivation (21.9). see Figure 19.6 for

the lookup definition
Case 1.i: Lookup-Step-Var. In this case, p = x, s = v. If v is a function
then it is easy to show that T = U, and we have proved that s is a
function value of type U as required.

If v is an object, then since by (21.4), T is inert, T must be a function,
object, or singleton type. Applying the the proof recipe to v’s typing
(21.7) in each case, we can rule out the function and singleton-type
cases and obtain that

T = µ (y : T1) (21.10)

Γ $! ν(y : S)d : µ (y : S) (21.11)

Γ $ S ù˚ U1 ˚ø T1 (21.12)

Γ, x : µ (y : T1) $! x : µ (y : T1) (21.13)

From here the result can be obtained by inverting (21.11) and using
Narrowing (see Lemma 15) and Lemma 56.
Case 1.ii: Lookup-Step-Val. We have p = x.b.a and

γ, x ÞÑ v $ x.b ν(y : T1) d (21.14)

Γ, x : T $! x.b.a : U (21.15)

where d = ¨ ¨ ¨ ^ ta = su ^ . . . To apply the induction hypothesis to
(21.14) we need to know the precise-I type of x.b. It is easy to show
that (21.15) implies that for some type V,

Γ, x : T $! x.b : µ (y : V) (21.16)

The only applicable case in the result of applying the induction hy-
pothesis to (21.14) is (2) because x.b’s type must be recursive. This
yields

x.b; Γ, x : T $ d
[

x.b/y
]

: S
[

x.b/y
]

(21.17)

Γ $ S ù˚ W ˚ø V (21.18)

134 type safety

Since the definitions d contain a record ta = su we can infer that

V = ¨ ¨ ¨ ^

a : V1
(

^ . . . (21.19)

Γ, x : T $ s : V1 (21.20)

Using (21.19) and (21.18) we can then show that

W = ¨ ¨ ¨ ^

a : W1
(

^ . . . and Γ $ V1 ù˚ W1 (21.21)

S = ¨ ¨ ¨ ^

a : S1
(

^ . . . and Γ $ S1 ù˚ W1 (21.22)

The remainder of the proof is based on a case analysis on the shapes
of s and V1 and is straightforward.
Case 1.iii: Lookup-Step-Path. In this case, p = x.b.a, s = q.a, and we
have

γ, x ÞÑ v $ x.b q (21.23)

Γ, x : T $! x.b.a : U (21.24)

To apply the induction hypothesis to (21.23) we proceed as in the
Lookup-Step-Val case, obtaining

Γ, x : T $! x.b : µ (y : V) (21.25)

The only applicable case in the result of applying the induction hy-
pothesis to (21.23) is (3) since there, s is a path. However, in that case
x.b’s precise-I type is a singleton type which is incompatible with its
recursive type according to (21.25), a contradiction.

Case 2: x ‰ xp. We have

Γ, x : T $! xp.b : U (21.26)

γ, x ÞÑ v $ xp.b s (21.27)

Since the receiver xp of the path xp.b is not equal to x, xp must be
contained in Γ, which means that the whole path xp.b must be typeable
in Γ:

Γ $! xp.b : U (21.28)

(21.29)

By similar reasoning we can look up the path in γ:

γ $ xp.b s (21.30)

This allows us to apply the induction hypothesis and obtain the result
we need to prove.

21.4 canonical forms in pdot 135

Lemma 57 establishes a connection between a path’s precise-I type
and the term it looks up to in the store. The following lemma does the
same for a path’s precise-II type.

lemma 58 (Lookup Preservation II). Let γ be a store that is well-formed
with respect to an inert, typed-paths envrionment Γ, and for some path p,
stable term s, and type T,

– γ $ p s and

– Γ $!! p : T.

Then one of the following is true:

1. there exists a type S and term u such that

– s is a function λ(y : S) u,

– Γ $ s : T, and

– Γ $! p : T, or

2. there exist types S and W, definitions d, and a path p such that

– t is an object ν(y : S)d,

– Γ $! p : µ (z : U), Note that a path’s
precise-I typing does
not have to be unique
since precise-I typing
can apply
type-elimination
rules

– Γ $! p : T,

– p; Γ $ d [p/y] : S [p/y], and

– Γ $ S ù˚ W ˚ø U, or

3. there exist paths q, r, and r1 such that

– s = q,

– T = r.type, and

– Γ $ r.type ù˚ r1.type ˚ø q.type.

Proof. The proof is by induction on the precise-II derivation of p. see Figure 21.1 for
the definition of
precise-II typingCase 1: Path!!. In this case, we have a precise-I derivation for p, and

the result follows from Lemma 57.

Case 2: Sngl-E!!. We have T = q.a.type and

Γ $!! p : q.type (21.31)

Γ $!! q.a : U (21.32)

γ $ p.a s (21.33)

We proceed by induction on the lookup derivation (21.33). The variable-
case is immediately ruled since our path ends with a field selection.

Case 2.i: Lookup-Step-Val. This case can be ruled out by applying the
outer induction hypothesis.

136 type safety

Case 2.ii: Lookup-Step-Path. We have

γ $ p q1 (21.34)

We apply the outer induction hypothesis, which yields only one possi-
ble case (3) where for some path r1,

Γ $ q.type ù˚ r1.type ˚ø q1.type (21.35)

We now have s = q1.a and T = q.a.type. Equations (21.31) and (21.32)
imply that Γ $!! p : q.a.type, and from (21.35) it follows that

Γ $ q.a.type ù˚ r1.a.type ˚ø q1.a.type (21.36)

which is what we needed to show.

Next, we prove a lemma similar to the above two lemmas (57 and 58)
that establishes a correspondence between a path’s precise-III typing
and the term it looks up in the store. Note that we only prove this
lemma for the case where a path’s type is inert. The case where a path
has a precise-III singleton type is proved separately.

lemma 59 (Lookup Preservation III-Inert). Let γ be a store that is well-
formed with respect to an inert, typed-paths envrionment Γ, and for some
path p, stable term s, and type T,

– γ $ p s and

– Γ $!!! p : T where T is inert.

Then one of the following is true:

– T is a function type @(x : S)U, and Γ $ s : @(x : S)U, or

– T is a recursive type µ (x : U), and there exist types S and W, defini-
tions d, and a path p such that

– t is an object ν(y : S)d,

– p; Γ $ d [p/y] : S [p/y], and

– Γ $ S ù˚ W ˚ø U, or

– t is a path q, and Γ $!!! q : T.

Proof. The proof is by induction on the precise-III typing of p. In eachsee Figure 21.1 for
the definition of

precise-III typing
case, we get a precise-II typing for p to which we apply Lemma 58 and
consider the three possible cases that the lemma yields. The proof for
each case involves low-level reasoning about properties of precise-I,
-II, and -III typing. We omit the details of the proof here and refer the
reader to the Coq version instead.

21.4 canonical forms in pdot 137

The following lemma states that if a path x.b looks up to a path x.c
with the same receiver x, then the path’s precise-II type is x.c.type.

lemma 60. Let γ be a store that is well-formed with respect to an inert,
typed-paths envrionment Γ, and

– γ $ x.b x.c.type

– Γ $!! x.b : T

Then T = x.c.type.

Proof. The proof is by induction on γ : Γ. In the inductive case with
the extended environment Γ, y : U, we distinguish between whether x
is equal to y. If it is not, we simply apply the induction hypothesis. If
x = y then we finish the proof using Lemma 58.

The next lemma establishes that if a path has a precise-I type then it
can be looked up in the store.

lemma 61. Let γ be a store that is well-formed with respect to an inert,
typed-paths envrionment Γ, and p has a precise-I type. Then there exists a
stable term s to which p can be looked up in the store, i. e. γ $ p s.

Proof. Similarly to the proof of Lemma 57, we perform two inductions.
The outer induction is on γ : Γ. In the inductive case where we have an
extended environment Γ, x : T, we do a case analysis on whether p’s
receiver xp is equal to x. If x = xp we induct on the precise-I typing of
p. The interesting case is the field-selection case Fld-E! where we have

Γ, x : T $! x.b : µ (y : U) (21.37)

Γ, x : T $! x.b :

a : U1
(

(21.38)

and we need to prove that x.b.a looks up to a term. By induction,

γ, x ÞÑ v $ x.b s1 (21.39)

Applying Lemma 57 to (21.38) and (21.39) yields only one possible
case where for some types S, W, and definitions d,

s1 = ν(z : S)d (21.40)

x.b; Γ, x : T $ d
[

x.b/z
]

: S
[

x.b/z
]

(21.41)

Γ $ S ù˚ W ˚ø U (21.42)

From (21.37) and (21.38) we can infer that for some type U1,

U = ¨ ¨ ¨ ^

a : U1
(

^ . . . (21.43)

because if a path has a recursive type T and a record type U, it means
that U was obtained by performing recursion elimination followed by

138 type safety

intersection elimination on T. This allows us to conclude from (21.42)
that for some types S1 and W1,

S = ¨ ¨ ¨ ^

a : S1
(

^ . . . (21.44)

W = ¨ ¨ ¨ ^

a : W1
(

^ . . . (21.45)

Γ $ S1 ù˚ W1 ˚ø U1 (21.46)

because pq- and qp-replacements preserve a type’s shape. Finally, we
can show using (21.44) and (21.41) that the definitions d must match
the type S, and therefore

d = ¨ ¨ ¨ ^

a = s2
(

^ . . . (21.47)

for some stable term s2. Finally, this allows us to conclude that

γ $ x.b.a s2

The following two lemmas state the same for precise-II and -III
typing: if a path has a precise-II and -III type then it can be looked up
in the store.

lemma 62. Let γ be a store that is well-formed with respect to an inert,
typed-paths envrionment Γ, and p has a precise-II type. Then there exists a
stable term s to which p can be looked up in the store, i. e. γ $ p s.

Proof. The proof is by induction on p’s precise-II derivation. The Path!!

case is proved using Lemma 61. In the Sngl-E!! case, we use Lemma 58

and simple properties of precise typing.

lemma 63. Let γ be a store that is well-formed with respect to an inert,
typed-paths envrionment Γ, and p has a precise-III type. Then there exists a
stable term s to which p can be looked up in the store, i. e. γ $ p s.

Proof. The proof is by induction on p’s precise-III typing; in both cases
it is easily solved using Lemma 62.

If a path shares the same receiver with its precise-II singleton type
q.type (i.e. Γ $!! x.b : x.c.type) then the path looks up to q in the store.

lemma 64. Let γ be a store that is well-formed with respect to an inert,
typed-paths environment Γ, and Γ $!! x.b : x.c.type. Then γ $ x.b x.c.

Proof. By Lemma 62, there exists a stable term s such that

γ $ x.b s

The result can be then proved using Lemma 58.

If a path shares the same receiver with its precise-III singleton type
q.type (i.e. Γ $!!! x.b : x.c.type) then the path looks up to q in the store
in a finite number of steps.

21.4 canonical forms in pdot 139

lemma 65. Let γ be a store that is well-formed with respect to an inert,
typed-paths envrionment Γ, and Γ $!!! x.b : x.c.type. Then γ $ x.b ˚ x.c.

Proof. We proceed by induction on the precise-III derivation of p. The
Path!! case follows from Lemma 64. In the Sngl-E!! case, we have for
some path q

Γ $!! x.b : q.type (21.48)

Γ $!!! q : x.c.type (21.49)

Suppose that q = xq.bq. We distinguish between two cases depending
on whether x is equal to xq.

Case 1: x = xq. By the induction hypothesis applied to (21.49),

γ $ x.bq ˚ x.c (21.50)

By Lemma 64 applied to (21.48),

γ $ x.b x.bq (21.51)

The result follows from (21.50) and (21.51).

Case 2: x ‰ xq. If x.b’s precise-II type is xq.bq.type where x ‰ xq it
means that the variable xq must occur before x in the environment
(otherwise the environment would be not be a typed-paths environ-
ment since we would not be able to have a type for xq.bq at the moment
when x has this path as its singleton type). However, according to
(21.49), xq.bq’s precise type is x.c.type, which means that x must be
defined before xq by analogous reasoning. Since each variable oc-
curs only once in the domain of an inert environment, we arrive at a
contradiction.

The following lemma shows that if x.b has precise-III type y.c, and
x ‰ y, then there must exist a type x.b1.type that is the “last” precise-III
type of x.b that has x as a receiver.

lemma 66. Let γ be a store that is well-formed with respect to an inert,
typed-paths environment Γ, and

Γ $!!! x.b : y.c.type

where x ‰ y. Then there exist paths x.b1 and z.c1 such that x ‰ z and

– Γ $!!! x.b : x.b1.type or x.b = x.b1

– Γ $!! x.b1 : z.c1.type

– Γ $!!! z.c1 : y.c.type or z.c1 = y.c

140 type safety

Proof. The proof is by induction on the precise-III typing of x.b. The
interesting case is Sngl-Trans!!!. We do a case analysis based on
whether y is equal to z. If it is the proof follows immediately. If y ‰ z
we have

Γ $!!! z.c1 : y.c.type (21.52)

Γ $!! x.b : z.c1.type (21.53)

By the induction hypothesis applied to (21.52), there exist paths z.c1

and z2.c2 such that z ‰ z2 and

Γ $!!! z.c1 : z.c1.type or z.c1 = z.c1 (21.54)

Γ $!! z.c1 : z2.c2.type (21.55)

Γ $!!! z2.c2 : y.c.type or z2.c2 = y.c (21.56)

The proof can be then finished by a case analysis on whether x is equal
to z.

In a typed-paths environment, there is a precise-typing relation
between equivalent singleton paths

lemma 67. If Γ is an inert, typed-paths environment and Γ $ p.type ù˚

q.type where p is a precise-III typeable path then either p = q or Γ $!!!

p : q.type.

Proof. The proof is by induction on the replacement closure relation.
We omit the details here.

We want to be able to prove that if a path p has a precise-III singleton
type r.type then p can be looked up to r. However, we can only prove
that if we know that p and r do not participate in an aliasing cycle. To
establish that, we use the fact that r’s type is a function type which
guarantees that eventually the lookup chain results in a value. The
following lemma says exactly this: if a path p’s precise-III type is r.type
and r has a precise-I function type then p can be looked up to r in the
store in a finite number of steps.

lemma 68. Let γ be a store that is well-formed with respect to an inert,
typed-paths environment Γ,

– Γ $!!! p : r.type, and

– Γ $! r : @(x : S) T.

Then γ $ p ˚ r.

Proof. As we have done before, we start with an induction on γ : Γ. In
the inductive case, we have an extended environment Γ, x : T and a
path p = xp.b. We distinguish between whether x is equal to xp. The

21.4 canonical forms in pdot 141

interesting case is when x = xp (the induction hypothesis takes care
of the other case). We have

Γ, x : T $! r : @(y : S)V (21.57)

Γ, x : T $!!! x.b : r.type (21.58)

and we need to prove that γ, x ÞÑ v $ x.b ˚ r.
By Lemma 63, there exists a stable term s such that

γ, x ÞÑ v $ x.b s (21.59)

By Lemma 59 applied to (21.58) and (21.59), there exist paths r1 and
r2 such that s = r1 and

Γ, x : T $ r.type ù˚ r2.type ˚ø r1.type (21.60)

Furthermore, because r has a precise-I function type by (21.57), r and
all its prefixes cannot have a precise-I or -II singleton type (we do
not present the proof here). This means that the only way how the
Γ, x : T $ r.type ù˚ r2.type could have been obtained in (21.60) is if
r = r2, i. e.

Γ, x : T $ r1.type ù˚ r.type (21.61)

Suppose now that r = xr.c. We proceed by case analysis on whether
x is equal to xr.

Case 1: x = xr. Follows from Lemma 65.

Case 2: x ‰ xr. By Lemma 66 applied to (21.58), there exist paths x.b1

and z.c1 such that

x ‰ z (21.62)

Γ, x : T $!!! x.b : x.b1.type (21.63)

Γ, x : T $!! x.b1 : z.c1.type (21.64)

Γ, x : T $!!! z.c1 : xr.c.type (21.65)

By Lemma 62 applied to (21.64), there exists a stable term s1 such that we leave out the
cases of Lemma 66
when x.b = x.b1 or
z.c1 = xr.c here
because they are
simpler

γ, x ÞÑ v $ x.b1 s1 (21.66)

Applying Lemma 58 to (21.64) and (21.66), after eliminating the im-
possible cases we obtain that there exist paths q and q1 such that s1 = q
and

Γ, x : T $ z.c1.type ù˚ q1.type ˚ø q.type (21.67)

142 type safety

By Lemma 65 applied to (21.63),

γ, x ÞÑ v $ x.b ˚ x.b1 (21.68)

By (21.68) and (21.66) we now know that

γ, x ÞÑ v $ x.b ˚ q (21.69)

and we need to prove that γ, x ÞÑ v $ x.b ˚ xr.c. Therefore, it
remains to show that γ, x ÞÑ v $ q ˚ xr.c. To do that we apply
Lemma 67 to the three qp-replacement closures in (21.61) and (21.69),
each of which yields a disjunction of equalities or precise-III typing
relationships between the involved paths. The proof is based on a
case analysis of the resulting eight cases and involves low-level rea-
soning about the properties of precise typing. The resulting cases are
either ruled out due to contradictions or by applying the induction
hypothesis.

We can now sketch the proof of Lemma 53 (Corresp. Values @).inert Γ

γ : Γ $ Γ♦

Γ $!!! p : @(x : T)U

γ $ p ˚ v
(Corresp. Values @)

Proof of Lemma 53 (Corresp. Values @). By Lemma 55 one of the follow-
ing is true:

Case 1: Γ $! p : @(x : T)U. By Lemma 61, there exists a term s such
that γ $ p s. Using Lemma 57 we can infer that either

– s is a function, in which case we are done, or

– p has a recursive or singleton type under precise-I typing which
is incompatible with p’s precise-I function type, a contradiction.

Case 2: There exists a path q such that Γ $!!! p : q.type and Γ $!

q : @(x : T)U. By Lemma 68,

γ $ p ˚ q,

and by Lemma 61,
γ $ q s

for some stable term s. According to Lemma 57, s must be a function
λ(x : T) u. Therefore, γ $ p ˚ λ(x : T) u.

Finally, we outline the proof of Lemma 54.

Proof of Lemma 54 (Corresp. Types @). The proof is by induction on the
reflexive, transitive closure of store lookup; the reflexive case is vacu-

inert Γ

γ : Γ $ Γ♦

γ $ s ˚ s1

Γ $ s : @(x : T)U

Γ $ s1 : @(x : T)U
(Corresp. Types @)

21.5 value typing 143

ously true. In the inductive case, we have

γ $ p s1 (21.70)

γ $ s1
˚ s1 (21.71)

Γ $ p : @(x : T)U (21.72)

We would like to apply the induction hypothesis to (21.71), which
would conclude the proof; however, for that we need to show that s1

has the same type as p.
Applying the proof recipe to (21.72), we obtain that

Γ $!!! p : @(x : T1)U1

where Γ $# T ă: T1 and Γ, x : T $# U1 ă: U. By Lemma 59 applied to
(21.70) and (21.72), s1 must have the same type as p’s precise type:

Γ $ s1 : @(x : T1)U1

Since Γ $ @(x : T1)U1 ă: @(x : T)U, by subsumption,

Γ $ s1 : @(x : T)U

which is what we needed to show.

21.5 value typing

Recall from Section 5.6 that the preservation lemma depends on
Lemma 20 (Value Typing) according to which any well-typed value
has an inert precise type. In pDOT, the lemma needs to additionally
state that the value’s precise type maintains the typed-paths property
of an environment:

Γ $ v : T

inert Γ $ Γ♦

Γ $! v : T1

inert T1

$ Γ, x : T1♦

Γ $ T1 ă: T
(Value Typing)

lemma 69 (Value Typing). If Γ is an inert, typed-paths environment and
Γ $ v : T, then there exists an inert type T1 such that

– Γ $! v : T1,

– Γ $ T1 ă: T, and

– $ Γ, x : T1♦ where x R dom(Γ)

The proof of pDOT’s version of value typing is more complicated
than in DOT. We first introduce a type-lookup relation and a few auxil-
iary lemmas.

To prove Value Typing for pDOT we need to be able to look inside
of deeply nested field declarations of types. For that we introduce a

type-lookup relation on a path p and two types T, U, denoted T
p
ùñ U,

which allows us to follow the path p inside of the recursive type T to

144 type safety

∅ x
ùñ ∅ (Tl-Empty)

T
x.b
ùñ µ (y : ¨ ¨ ¨ ^ ta : Su ^ . . .)

T
x.b.a
ùùñ S

[
x.b/y

] (Tl)

Figure 21.6: The
type lookup rela-
tion

yield the type U. For example, µ (x : ta : µ (y : tb : Ju)u)
x.a.b
ùùñ J. The

definition of type lookup is presented in Figure 21.6.
The following lemma connects precise-I typing of a path x.b1. ¨ ¨ ¨ .bn

with type lookup in x’s environment type Γ(x). Specifically, it gives
one access to the environment type that is assigned to b1 and to bn.

lemma 70. Let Γ, x : µ (x : T) be an inert environment, and

Γ, x : µ (x : T) $! x.b : W

where b = b1. ¨ ¨ ¨ .bn and n ą 0. Then there exists a type V such that

– T = ¨ ¨ ¨ ^ tb1 : Vu ^ ¨ ¨ ¨ and

– µ (x : T)
x.b1¨¨¨ .bn´1
ùùùùùùñ µ (z : ¨ ¨ ¨ ^ tbn : Wu ^ ¨ ¨ ¨)

Proof. By induction on precise-I typing.

Suppose that the path p corresponds to an object that contains a
record d of type tb : Vu, and that V = ¨ ¨ ¨ ^ ta : q.typeu ^ ¨ ¨ ¨ . Then q is
well-typed.

lemma 71. Suppose that for an inert type S,

– p; Γ $ d : tb : Vu,

– S
p
ùñ µ (y : T),

– T [p/y] = ¨ ¨ ¨ ^ tb : Vu ^ ¨ ¨ ¨ ,

– S
p.b.b
ùùñ µ (z : U), and

– U
[

p.b.b/z
]
= ¨ ¨ ¨ ^ ta : q.typeu ^

Then q is typeable in Γ.

Proof. The proof is done by a case analysis on d’s typing derivation.
It requires reasoning about properties of type lookup which we omit
here.

The same generalizes to the case where a path p refers to an object
with multiple declarations d whose record type contains tb : Vu.

lemma 72. Suppose that for an inert type S,

– p; Γ $ d : ¨ ¨ ¨ ^ tb : Vu ^ ¨ ¨ ¨ ,

21.6 type soundness for pdot 145

– S
p
ùñ µ (y : T),

– T [p/y] = ¨ ¨ ¨ ^ tb : Vu ^ ¨ ¨ ¨ ,

– S
p.b.b
ùùñ µ (z : U), and

– U
[

p.b.b/z
]
= ¨ ¨ ¨ ^ ta : q.typeu ^

Then q is typeable in Γ.

Proof. The proof is by induction on the definition-typing derivation of
d and uses Lemma 71.

We can now outline the proof of Lemma 69 (Value Typing).

Γ $ v : T

inert Γ $ Γ♦

Γ $! v : T1

inert T1

$ Γ, x : T1♦

Γ $ T1 ă: T
(Value Typing)

Proof of Lemma 69 (Value Typing). The proof is by induction on the typ-
ing of v. The interesting case is the object typing rule {}-I (see Fig-
ure 19.2). We have v = ν(x : U)d, T = µ (x : U), and

x; Γ, x : U $ d : U (21.73)

We need to prove that there exists an inert type T1 that is a subtype
of µ (x : U), such that Γ $! ν(x : U)d : T1 and such that $ Γ, x : T1♦.
We choose µ (x : U) as this type. The challenge is to show that $
Γ, x : µ (x : U)♦. That is, we must show that if a path whose receiver
is x has a singleton type q.type then q must be precise-II typeable in
the extended environment Γ, x : T (see rule Wt in Figure 21.5). To
prove that, suppose that

Γ, x : µ (x : U) $! x.b : q.type (21.74)

We first prove that q has a general type in the extended environment.
We must show that there exists a type S such that Γ, x : µ (x : U) $!!

q : S.
Suppose that b = b1. ¨ ¨ ¨ .bn. If n = 0 then from (21.74) we can infer

that U = q.type. However, then µ (x : U) is not inert, a contradiction.
Therefore, n ą 0, and by Lemma 70 applied to (21.74), we have

µ (x : U)
x.b1.¨¨¨ .bn´1
ùùùùùùñ µ (z : ¨ ¨ ¨ ^ tbn : q.typeu ^ ¨ ¨ ¨) (21.75)

Then by Lemma 72 applied to (21.74) and (21.75) (we choose µ (x : U)

as S and x as p, and we use the fact that µ (x : U)
x
ùñ µ (x : U)) we

obtain that q has a general type. It is then easy to show using the proof
recipe that if a path has a general type it also has a precise-II type,
which concludes the proof.

21.6 type soundness for pdot

To formulate the soundness theorems we update the definition of
normal forms for pDOT:

146 type safety

definition 73 (Normal Form). A term t is in normal form, denotedp Û v Û

t Û, if t is either a path or a value.

The two central lemmas of the soundness proof are Progress and
Preservation:

γ : Γ inert Γ $ Γ♦

Γ $ t : T

γ | t ÞÝÑ γ1 | t1

_ t Û

(Progress)

lemma 74 (Progress). Let γ be a store and Γ a typing environment. If all
of the following hold:

– γ : Γ,

– Γ is inert,

– Γ is a typed-paths environment, and

– Γ $ t : T,

then t is in normal form or there exists a term t1 and a store γ1 such that
γ | t ÞÝÑ γ1 | t1.

γ : Γ inert Γ $ Γ♦

Γ $ t : T

γ | t ÞÝÑ γ1 | t1

Γ1 $ t1 : T

γ1 : Γ1 inert Γ1 $ Γ1♦
(Preservation)

lemma 75 (Preservation). Let γ be a store and Γ a typing environment. If
all of the following hold:

– γ : Γ,

– Γ is inert,

– Γ is a typed-paths environment,

– Γ $ t : T, and

– γ | t ÞÝÑ γ1 | t1,

then there exists an inert, typed-paths environment Γ1 such that γ1 : Γ1 and
Γ1 $ t1 : T.

With the canonical forms and value typing lemmas in place, the
proofs of the above two lemmas mirror the proofs of the same lemmas
of the simple soundness proof for DOT (Section 5.6).

Progress and Preservation allow us to easily prove type safety which
ensures that any well-typed pDOT program does not get stuck, i.e. it
either diverges or reduces to a normal form (a path or a value):

theorem 76 (pDOT Type Soundness). If $ t : T then either t diverges
(t ò), or t reduces to a normal form s, i.e. ∅ | t ÞÝÑ˚ γ | s and Γ $ s : T for
some Γ such that γ : Γ.

$ t : T

(∅ | t ÞÝÑ˚ γ | t1

^ t1 Û) _ t ò

(pDOT Soundness)
Since evaluating pDOT programs can result in paths (which are

normal form), one might ask whether looking up those paths yields
anything meaningful. As mentioned in Section 18.2.3, looking up any
well-typed path in the runtime environment results either in a value
or an infinite loop. To formulate the final soundness theorem that
reasons about both term reduction and path lookup we define the
following extended reduction relation � :

21.6 type soundness for pdot 147

γ | t ÞÝÑ γ1 | t1

γ | t � γ1 | t1
γ $ s s1

γ | s � γ | s1

We denote the reflexive, transitive closure of extended reduction
as �˚ .

definition 77 (Extended Divergence). A term t extendedly diverges,
denoted t òò, if there exists an infinite extended-reduction sequence

∅ | t � γ1 | t1 � . . . � γn | tn � . . .

Finally, we state the following extended soundness theorem:

theorem 78 (Extended Type Soundness). If $ t : T then either t
extendedly diverges (t òò), or t reduces to a value, i.e. ∅ | t �˚ γ | v.

$ t : T

∅ | t � γ | v

_ t òò

(Extended Soundness)A diagram with some of the pDOT-related changes to the DOT
soundness proof is presented in Figure 21.7.

148 type safety

progress

preservation

canonical forms

general to tight

tight to invertible-II

invertible-II to invertible-I

invertible-I to precise-III

$ to $#

Sel
replacement

Sel
premise

Sngl
replacement

Sngl
premise

Can. forms λ

Corresp. types

@ to Γ(p) µ to ν@ to λ µ to Γ(p)

$# to $¡¡v

$¡¡v
subtyping

closure

$# to $¡¡

$¡¡
subtyping

closure

$¡¡v to $¡v@ $¡¡v to $¡vµ$¡¡ to $¡@ $¡¡ to $¡µ

$¡v to $!!! λ $¡v to $!!! ν$¡ to $!!! @ $¡ to $!!! µ

_.type to p _.type to Γ(p)

$¡¡v to $¡ _ $¡¡ to $¡ _.type

$¡v to $!!! p $¡ to $!!! _.type

Figure 21.7: An instance of the dependency graph from Figure 5.4 showing
the main lemmas in the pDOT proof as an extension of the sim-
ple DOT proof (Part I). Gray nodes denote the pDOT lemmas
that have similar analogues in the DOT proof. White nodes de-
note pDOT specific lemmas. We omit the Precise-II and Precise-I
related lemmas as well as additional lemmas required to prove
Corresponding Types and the conversions between tight and
invertible-II, and between invertible-II and invertible-I typing.

22
R E L AT E D W O R K

This section reviews the work related to formalizing Scala with support
for fully path-dependent types.

22.1 early class-based scala formalizations

Several predecessors of the DOT calculus support path-dependent
types on paths of arbitrary length. The first Scala formalization,
νObj (Odersky, Cremet, et al., 2003), is a nominal, class-based cal-
culus with a rich set of language features that formalizes object-
dependent type members. Two subsequent calculi, Featherweight
Scala (FSalg) (Cremet et al., 2006) and Scalina (Moors, Piessens, and
Odersky, 2008), build on νObj to establish Scala formalizations with
algorithmic typing and with full support for higher-kinded types. All
three calculi support paths of arbitrary length, singleton types, and
abstract type members. Whereas FSalg supports type-member selection
directly on paths, νObj and Scalina allow selection T#A on types. A
path-dependent type p.A can thus be encoded as a selection on a
singleton type: p.type#A. νObj is the only of the above calculi that
comes with a type-safety proof. The proof is non-mechanized.

Both pDOT and these calculi prevent type selections on non-termina-
ting paths. νObj achieves this through a contraction requirement that
prevents a term on the right-hand side of a definition from referring
to the definition’s self variable. At the same time, recursive calls can
be encoded in νObj by referring to the self variable from a nested class
definition. FSalg ensures that paths are normalizing through a cycle
detection mechanism that ensures that a field selection can appear
only once as part of a path. Scalina avoids type selection T#A on a
non-terminating type T by explicitly requiring T to be of a concrete
kind, which means that T expands to a structural type R that contains
a type member A. Although Scalina allows A to have upper and
lower bounds, bad bounds are avoided because A also needs to be
immediately initialized with a type U that conforms to A’s bounds,
which is more restrictive than DOT. In pDOT, it is possible to create
cyclic paths but impossible to do a type selection on them because as
explained in Section 18.6, cyclic paths that can appear in a concrete
execution context cannot be typed with a type-member declaration.

A difference between pDOT and the above calculi is that to ensure
type soundness, paths in pDOT are normal form. This is necessary to
ensure that each object has a name, as explained in Section 18.2.2. νObj
and FSalg achieve type safety in spite of reducing paths by allowing

149

150 related work

field selection only on variables. This way, field selections always
occur on named objects. Scalina does not require objects to be tied
to names. In particular, its field selection rule E_Sel allows a field
selection new T.a on an object if T contains a field definition ta = su.
The selection reduces to s [new T/this], i.e. each occurrence of the self
variable is replaced with a copy of new T.

A second difference to pDOT is the handling of singleton types. In
order to reason about a singleton type p.type, νObj, FSalg, and Scalina
use several recursively defined judgments (membership, expansion,
and others) that rely on analyzing the shape and well-formedness of
the type that p expands to. By contrast, pDOT contains one simple
Sngl-Trans rule that allows a path to inherit the type of its alias. On
the other hand, pDOT has the shortcoming that singleton typing is not
reflexive. Unlike in the above systems and in Scala, pDOT lacks a type
axiom Γ $ p : p.type. Such a rule would undermine the anti-symmetry
of path aliasing which is essential to the safety proof.

None of the other calculi have to confront the problem of bad
bounds. Unlike DOT, pDOT, and Scala, νObj and FSalg do not support
lower bounds of type members and have no unique upper and lower
bounds on types. Scalina does have top and bottom types and supports
bounds through interval kinds, but it avoids bad bounds by requiring
types on which selection occurs to be concrete. In addition, it is
unknown whether Scalina and FSalg are sound.

Finally, the three type systems are nominal and class based, and
include a large set of language features that are present in Scala. DOT
is a simpler and smaller calculus that abstracts over many of the
design decisions of the above calculi. Since DOT aims to be a base
for experimentation with new language features, it serves well as a
minimal core calculus for languages with type members, and the goal
of pDOT is to generalize DOT to fully path-dependent types.

22.2 dot-like calculi

Amin, Moors, and Odersky, (2012) present the first version of a DOT
calculus. It includes type intersection, recursive types, unique top and
bottom types, type members with upper and lower bounds, and path-
dependent types on paths of arbitrary length. This version of DOT
has explicit support for fields (vals) and methods (defs). Fields must be
initialized to variables, which prevents the creation of non-terminating
paths (since that would require initializing fields to paths), but it also
limits expressivity. Specifically, just like in DOT by Amin, Grütter,
et al., (2016), path-dependent types cannot refer to nested modules
because modules have to be created through methods, and method
invocations cannot be part of a path-dependent type. The calculus is
not type-safe, as illustrated by multiple counterexamples in the paper.

22.2 dot-like calculi 151

In particular, this version of DOT does not track path equality which,
as explained in the paper, breaks preservation.

To be type-safe, DOT must ensure that path-dependent types are
invoked only on terminating paths. A possible strategy to ensure a
sound DOT with support for paths is to investigate the conditions
under which terms terminate, and to impose these conditions on the
paths that participate in type selections. To address these questions,
Wang and Rompf, (2017) present a Coq-mechanized semantic proof of
strong normalization for the Dă: calculus. Dă: is a generalization of
System Fă: with lower- and upper-bounded type tags and variable-
dependent types. The paper shows that recursive objects constitute
the feature that enables recursion and hence Turing-completeness
in DOT. Since Dă: lacks recursive objects, it is strongly normalizing.
Furthermore, the lack of objects and fields implies that this version of
Dă: can only express paths that are variables.

Hong, Park, and Ryu, (2018) present πDOT, a strongly normalizing
version of a Dă: without top and bottom types but with support for
paths of arbitrary length. πDOT keeps track of path aliasing through
path-equivalence sets, and the paper also mentions the possibility
of using singleton types to formalize path equality. Like the calculus
by Wang and Rompf, (2017), this version of Dă: is strongly normalizing
due to the lack of recursive self variables. This guarantees that paths
are acyclic. It also ensures that due to the lack of recursion elimination,
reducing paths preserves soundness (unlike in pDOT, as explained
in Section 18.2.2). πDOT comes with a non-mechanized soundness
proof.

By contrast with these two papers, our work proposes a Turing-
complete generalization with paths of arbitrary length of the full DOT
calculus, which includes objects and type intersections.

22.2.1 Other Related Languages and Calculi

Scala’s module system shares many similarities with languages of the
ML family. Earlier presentations of ML module systems Dreyer, Crary,
and Harper, (2003), Harper and Lillibridge, (1994), and Leroy, (1994)
allow fine-grained control over type abstractions and code reuse but
do not support mutually recursive modules, and separate the language
of terms from the language of modules. MixML extends the essential
features of these type systems with the ability to do both hierarchical
and mixin composition of modules (Rossberg and Dreyer, 2013). The
language supports recursive modules which can be packaged as first-
class values. The expressive power of MixML’s module system, plus
support for decidable type-checking requires a set of constraints on
the linking (module mixin) operation that restrict recursion between
modules, including a total order on label paths, and yields a complex
type system that closely models actual implementations of ML.

152 related work

Rossberg, Russo, and Dreyer, (2014) and Rossberg, (2018) address
the inherent complexity of ML module systems by presenting encod-
ings of an ML-style module language into System Fω. The latter paper
presents 1ML, a concise version of ML that fully unifies the language
of modules with the language of terms. However, both formalizations
exclude recursive modules.

A type system that distinguishes types based on the runtime values
of their enclosing objects was first introduced by Ernst, (2001) in the
context of family polymorphism. Notably, family polymorphism is sup-
ported by virtual classes, which can be inherited and overriden within
different objects and whose concrete implementation is resolved at
runtime. Virtual classes are supported in the Beta and gbeta program-
ming languages Ernst, (1999) and Madsen and Møller-Pedersen, (1989)
(but not in Scala in which classes are statically resolved at compile
time) and formalized by the vc and Tribe calculi Clarke et al., (2007)
and Ernst, Ostermann, and Cook, (2006). Paths in vc are relative to this
and consist of a sequence of out keywords, which refer to enclosing ob-
jects, and field names. To track path equality, vc uses a normalization
function that converts paths to a canonical representation, and to rule
out cyclic paths it defines a partial order on declared names. Tribe’s
paths can be both relative or absolute: they can start with a variable,
and they can intermix class and object references. The calculus uses
singleton types to track path equality and rules out cyclic paths by
disallowing cyclic dependencies in its inheritance relation.

A difference between pDOT and all of vc, Tribe, and the ML for-
malizations is that pDOT does not impose any orderings on paths,
and fully supports recursive references between objects and path-
dependent types. In addition, pDOT’s ability to define type members
with both lower and upper bounds introduces a complex source of
unsoundness in the form of bad bounds (alas, the cost for its expressive-
ness is that pDOT’s type system is likely not decidable). Yet, by being
mostly structurally typed, without having to model initialization and
inheritance, pDOT remains general and small. Finally, by contrast to
the above, pDOT comes with a mechanized type-safety proof.

22.2.2 Decidability

As discussed in Chapter 8, typechecking the DOT calculus is conjec-
tured to be undecidable. The open question of decidability of DOT
needs to be resolved before we can consider decidability of pDOT.

We believe that pDOT does not introduce additional sources of
undecidability into DOT. One feature of pDOT that might call this
into question is singleton types. In particular, Stone and Harper, (2006)
study systems of singleton kinds that reason about types with non-
trivial reduction rules, yet it remains decidable which types reduce to
the same normal form. The singleton types of both Scala and pDOT

22.2 dot-like calculi 153

are much simpler and less expressive in that only assignment of an
object between variables and paths is allowed, but the objects are
not arbitrary terms and do not reduce. Thus, the Scala and pDOT
singleton types only need to track sequences of assignments. Therefore,
although decidability of pDOT is unknown because it is unknown
for DOT, the singleton types that we add in pDOT are unlikely to
affect decidability because they are significantly less expressive than
the singleton types studied by Stone and Harper.

23
C O N C L U S I O N

The DOT calculus was designed as a small core calculus to model
Scala’s type system with a focus on path-dependent types. However,
DOT can only model types that depend on variables, which signif-
icantly under-approximates the behaviour of Scala programs. Scala
and, more generally, languages with type members need to rely on
fully path-dependent types to encode the possible type dependencies
in their module systems without restrictions. Until now, it was un-
clear whether combining the fundamental features of languages with
path-dependent types, namely bounded abstract type members, inter-
sections, recursive objects, and paths of arbitrary length is type-safe.

We propose pDOT, a calculus that generalizes DOT with support
for paths of arbitrary length. The main insights of pDOT are to rep-
resent object identity through paths, to ensure that well-typed paths
without cyclic aliasing always represent values, to track path equality
with singleton types, and to eliminate type selections on cyclic paths
through precise object typing. pDOT allows us to use the full potential
of path-dependent types. pDOT comes with a type-safety proof and
motivating examples for fully-path dependent types and singleton
types that are mechanized in Coq.

155

B I B L I O G R A P H Y

Amin, Nada, Samuel Grütter, Martin Odersky, Tiark Rompf, and
Sandro Stucki (2016). “The Essence of Dependent Object Types.”
In: A List of Successes That Can Change the World - Essays Dedicated to
Philip Wadler on the Occasion of His 60th Birthday, pp. 249–272.

Amin, Nada, Adriaan Moors, and Martin Odersky (2012). “Dependent
Object Types.” In: International Workshop on Foundations of Object-
Oriented Languages (FOOL 2012).

Amin, Nada and Tiark Rompf (2017). “Type soundness proofs with
definitional interpreters.” In: Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pp. 666–679. url: http://dl.acm.org/
citation.cfm?id=3009866.

Amin, Nada, Tiark Rompf, and Martin Odersky (2014). “Foundations
of path-dependent types.” In: Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA,
October 20-24, 2014, pp. 233–249.

Amin, Nada and Ross Tate (2016). “Java and Scala’s type systems are
unsound: the existential crisis of null pointers.” In: Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2016, part
of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November
4, 2016, pp. 838–848.

Appel, Andrew W. and Amy P. Felty (2000). “A Semantic Model of
Types and Machine Instructions for Proof-Carrying Code.” In: POPL
2000, Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 243–253.

Bell, CJ, Robert Dockins, Aquinas Hobor, and David Walker (2008).
“Comparing semantic and syntactic methods in mechanized proof
frameworks.” In: International Workshop on Proof-Carrying Code (PCC.
Citeseer.

Bruce, Kim B., Martin Odersky, and Philip Wadler (1998). “A Statically
Safe Alternative to Virtual Types.” In: ECOOP’98 - Object-Oriented
Programming, 12th European Conference, pp. 523–549.

Clarke, Dave, Sophia Drossopoulou, James Noble, and Tobias Wrigstad
(2007). “Tribe: a simple virtual class calculus.” In: Proceedings of the
6th International Conference on Aspect-Oriented Software Development,
AOSD 2007, Vancouver, British Columbia, Canada, March 12-16, 2007,
pp. 121–134.

Cremet, Vincent, Francois Garillot, Sergueï Lenglet, and Martin Oder-
sky (2006). “A Core Calculus for Scala Type Checking.” In: Mathe-

157

http://dl.acm.org/citation.cfm?id=3009866
http://dl.acm.org/citation.cfm?id=3009866

158 bibliography

matical Foundations of Computer Science, 31st International Symposium,
Slovakia.

Documentation, Dotty (2018a). Intersection Types. url: https://dotty.
epfl.ch/docs/reference/intersection-types.html.

Documentation, Scala (2018b). Paths. url: https://www.scala-lang.
org/files/archive/spec/2.11/03-types.html#paths.

Dreyer, Derek, Karl Crary, and Robert Harper (2003). “A type system
for higher-order modules.” In: Conference Record of POPL 2003: The
30th SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, New Orleans, Louisisana, USA, January 15-17, 2003, pp. 236–
249.

Ernst, Erik (1999). “gbeta – a Language with Virtual Attributes, Block
Structure, and Propagating, Dynamic Inheritance.” PhD thesis. De-
partment of Computer Science, University of Aarhus, Århus, Den-
mark.

– (2001). “Family Polymorphism.” In: ECOOP 2001 - Object-Oriented
Programming, 15th European Conference, Budapest, Hungary, June 18-22,
2001, Proceedings, pp. 303–326.

Ernst, Erik, Klaus Ostermann, and William R. Cook (2006). “A vir-
tual class calculus.” In: Proceedings of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2006, Charleston, South Carolina, USA, January 11-13, 2006, pp. 270–
282.

Giarrusso, Paolo, Léo Stefanesco, Amin Timany, and Lars Birkedal
(2019). Towards Semantic Type Soundness for Dependent Object Types
and Scala with Logical Relations in Iris. url: https://www.dropbox.
com/s/ljn89labnf9g5kp/beamer-intro-double-delft-2019-02-

13-03.13.pdf.
Harper, Robert and Mark Lillibridge (1994). “A Type-Theoretic Ap-

proach to Higher-Order Modules with Sharing.” In: Conference
Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, Portland, Oregon, USA, January 17-21,
1994, pp. 123–137.

Hong, Jaemin, Jihyeok Park, and Sukyoung Ryu (2018). “Path De-
pendent Types with Path-equality.” In: Proceedings of the 9th ACM
SIGPLAN International Symposium on Scala. Scala 2018. St. Louis, MO,
USA, pp. 35–39. isbn: 978-1-4503-5836-1.

Hu, Jason and Ondrej Lhoták (2019). “Undecidability of Dă: and
Its Decidable Fragments.” In: CoRR abs/1908.05294. url: http :

//arxiv.org/abs/1908.05294.
Hughes, John (1989). “Why Functional Programming Matters.” In:

Comput. J. 32.2, pp. 98–107.
Kabir, Ifaz and Ondřej Lhoták (2018). “κDOT: scaling DOT with mu-

tation and constructors.” In: Proceedings of the 9th ACM SIGPLAN
International Symposium on Scala. ACM, pp. 40–50.

https://dotty.epfl.ch/docs/reference/intersection-types.html
https://dotty.epfl.ch/docs/reference/intersection-types.html
https://www.scala-lang.org/files/archive/spec/2.11/03-types.html#paths
https://www.scala-lang.org/files/archive/spec/2.11/03-types.html#paths
https://www.dropbox.com/s/ljn89labnf9g5kp/beamer-intro-double-delft-2019-02-13-03.13.pdf
https://www.dropbox.com/s/ljn89labnf9g5kp/beamer-intro-double-delft-2019-02-13-03.13.pdf
https://www.dropbox.com/s/ljn89labnf9g5kp/beamer-intro-double-delft-2019-02-13-03.13.pdf
http://arxiv.org/abs/1908.05294
http://arxiv.org/abs/1908.05294

bibliography 159

Leroy, Xavier (1994). “Manifest Types, Modules, and Separate Compila-
tion.” In: Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Portland, Oregon,
USA, January 17-21, 1994, pp. 109–122.

Mackay, Julian, Hannes Mehnert, Alex Potanin, Lindsay Groves, and
Nicholas Robert Cameron (2012). “Encoding Featherweight Java
with assignment and immutability using the Coq proof assistant.”
In: FTfJP 2012, pp. 11–19.

Madsen, Ole Lehrmann and Birger Møller-Pedersen (1989). “Virtual
Classes: A Powerful Mechanism in Object-Oriented Programming.”
In: Conference on Object-Oriented Programming: Systems, Languages,
and Applications (OOPSLA’89), New Orleans, Louisiana, USA, October
1-6, 1989, Proceedings. Pp. 397–406.

Moors, Adriaan, Frank Piessens, and Martin Odersky (2008). “Safe
type-level abstraction in Scala.” In: International Workshop on Founda-
tions of Object-Oriented Languages (FOOL 2008).

Nieto, Abel (2017). “Towards algorithmic typing for DOT (short pa-
per).” In: Proceedings of the 8th ACM SIGPLAN International Sympo-
sium on Scala, SCALA@SPLASH 2017, Vancouver, BC, Canada, October
22-23, 2017, pp. 2–7.

– (2018). Scala with explicit nulls. url: https://github.com/abeln/
dotty/wiki/scala-with-explicit-nulls.

Norris, Rob (2015). Returning the “Current” Type in Scala. url: https:
//tpolecat.github.io/2015/04/29/f-bounds.html.

Odersky, Martin (2016). Type projection is unsound #1050. url: https:
//github.com/lampepfl/dotty/issues/1050.

Odersky, Martin, Vincent Cremet, Christine Röckl, and Matthias Zenger
(2003). “A Nominal Theory of Objects with Dependent Types.” In:
ECOOP 2003 - Object-Oriented Programming, 17th European Conference,
Darmstadt, Germany, July 21-25, 2003, Proceedings, pp. 201–224.

Odersky, Martin, Guillaume Martres, and Dmitry Petrashko (2016).
“Implementing higher-kinded types in Dotty.” In: Proceedings of
the 7th ACM SIGPLAN Symposium on Scala, SCALA@SPLASH 2016,
pp. 51–60.

Odersky, Martin and Matthias Zenger (2005a). “Independently exten-
sible solutions to the expression problem.” In: FOOL 2005. Vol. 12.

– (2005b). “Scalable component abstractions.” In: Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2005, October 16-20,
2005, San Diego, CA, USA, pp. 41–57.

Osvald, Leo, Grégory M. Essertel, Xilun Wu, Lilliam I. González
Alayón, and Tiark Rompf (2016). “Gentrification gone too far? af-
fordable 2nd-class values for fun and (co-)effect.” In: Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016,

https://github.com/abeln/dotty/wiki/scala-with-explicit-nulls
https://github.com/abeln/dotty/wiki/scala-with-explicit-nulls
https://tpolecat.github.io/2015/04/29/f-bounds.html
https://tpolecat.github.io/2015/04/29/f-bounds.html
https://github.com/lampepfl/dotty/issues/1050
https://github.com/lampepfl/dotty/issues/1050

160 bibliography

part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - Novem-
ber 4, 2016, pp. 234–251.

Pierce, Benjamin C. (1992a). “Bounded Quantification is Undecidable.”
In: Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’92. Albuquerque, New
Mexico, USA: ACM, pp. 305–315. isbn: 0-89791-453-8.

– (1992b). “Bounded Quantification is Undecidable.” In: Conference
Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Albuquerque, New Mexico,
USA, January 19-22, 1992, pp. 305–315.

– (2002). Types and programming languages. MIT Press. isbn: 978-0-262-
16209-8.

Rapoport, Marianna, Ifaz Kabir, Paul He, and Ondřej Lhoták (2017).
“A simple soundness proof for dependent object types.” In: PACMPL
1.OOPSLA, 46:1–46:27.

Rapoport, Marianna and Ondrej Lhoták (2016). “Mutable WadlerFest
DOT.” In: CoRR abs/1611.07610. arXiv: 1611.07610. url: http:
//arxiv.org/abs/1611.07610.

Rapoport, Marianna and Ondřej Lhoták (2017). “Mutable WadlerFest
DOT.” In: FTfJP 2017, 7:1–7:6.

Reynolds, John C (1998). “Definitional interpreters for higher-order
programming languages.” In: Higher-order and symbolic computation
11.4, pp. 363–397.

Rompf, Tiark and Nada Amin (2015). “From F to DOT: Type Soundness
Proofs with Definitional Interpreters.” In: CoRR abs/1510.05216v1.
url: http://arxiv.org/abs/1510.05216v1.

– (2016a). “From F to DOT: Type Soundness Proofs with Definitional
Interpreters.” In: CoRR abs/1510.05216v2. url: http://arxiv.org/
abs/1510.05216v2.

– (2016b). “Type soundness for dependent object types (DOT).” In:
Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands,
October 30 - November 4, 2016, pp. 624–641.

Rossberg, Andreas (2018). “1ML — Core and modules united.” In:
Journal of Functional Programming 28, e22.

Rossberg, Andreas and Derek Dreyer (2013). “Mixin’ Up the ML
Module System.” In: ACM Trans. Program. Lang. Syst. 35.1, 2:1–2:84.

Rossberg, Andreas, Claudio V. Russo, and Derek Dreyer (2014). “F-ing
modules.” In: J. Funct. Program. 24.5, pp. 529–607.

Scalas, Alceste and Nobuko Yoshida (2016). “Lightweight Session Pro-
gramming in Scala.” In: 30th European Conference on Object-Oriented
Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, 21:1–21:28.

Stone, Christopher A. and Robert Harper (2006). “Extensional equiva-
lence and singleton types.” In: ACM Trans. Comput. Log. 7.4, pp. 676–
722.

http://arxiv.org/abs/1611.07610
http://arxiv.org/abs/1611.07610
http://arxiv.org/abs/1611.07610
http://arxiv.org/abs/1510.05216v1
http://arxiv.org/abs/1510.05216v2
http://arxiv.org/abs/1510.05216v2

bibliography 161

Wang, Fei and Tiark Rompf (2017). “Towards Strong Normaliza-
tion for Dependent Object Types (DOT).” In: 31st European Con-
ference on Object-Oriented Programming, ECOOP 2017, June 19-23,
2017, Barcelona, Spain, 27:1–27:25.

Wright, Andrew K. and Matthias Felleisen (1994). “A Syntactic Ap-
proach to Type Soundness.” In: Inf. Comput. 115.1, pp. 38–94.

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić. The
style was inspired by Robert Bringhurst’s seminal book on typography
“The Elements of Typographic Style”.

Final Version as of October 9, 2019 ().

	Declaration
	Statement of Contributions
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Acronyms

	Prologue
	1 Introduction
	1.1 The Scala Programming Language
	1.1.1 Modularity Through Abstraction
	1.1.2 Modularity Through Composition

	1.2 The DOT Calculus
	1.3 Limitations of DOT
	1.4 This Thesis
	1.4.1 part:simple: A Simple Soundness Proof for DOT
	1.4.2 part:mutation: A DOT With Mutable References
	1.4.3 part:paths: A DOT With Fully Path-Dependent Types
	1.4.4 Contributions

	2 Background: The DOT Calculus
	2.1 DOT Abstract Syntax
	2.2 DOT Operational Semantics
	2.3 DOT Typing Rules
	2.4 Example

	 A Simple Soundness Proof for DOT
	3 Introduction
	4 Bad Bounds
	5 The Simple DOT Proof
	5.1 Overview
	5.2 Inert Typing Contexts
	5.3 Tight Typing
	5.4 Inversion of Tight Typing
	5.5 Canonical Forms Lemmas
	5.6 Progress, Preservation, and Soundness
	5.7 Proof Structure and Extensions
	5.7.1 Proof Structure

	6 Modifications of the Calculus
	7 The Struggle for ``Good'' Bounds
	8 Related Work
	8.1 DOT Soundness Proofs
	8.2 History of Scala Calculi
	8.3 Other Related Calculi
	8.4 Type Checking Decidability
	8.5 Syntactic vs. Semantic Proofs

	9 Summary

	 Case Study: Mutable DOT
	10 Introduction
	11 The Mutable DOT Calculus
	11.1 Mutable DOT Abstract Syntax
	11.2 Mutable DOT Operational Semantics
	11.3 Mutable DOT Typing Rules
	11.4 Subtyping rules

	12 Type Safety
	13 Discussion
	13.1 Motivation for a heap of variables
	13.2 Correctness of a heap of variables
	13.3 Creating references

	14 Related Work
	15 Summary

	 Fully Path-Dependent Types
	16 Introduction
	17 Challenges of Adding Paths to DOT
	17.1 Path Limitations in DOT: A Minimal Example
	17.2 Challenges of Adding Paths to DOT
	17.2.1 Naive Path Extension Leads to Bad Bounds

	18 Main Ideas
	18.1 Paths Instead of Variables
	18.2 Paths as Identifiers
	18.2.1 Variables are Identifiers in DOT
	18.2.2 Paths are Identifiers in pDOT
	18.2.3 Well-Typed Paths Don't Go Wrong

	18.3 Path Replacement
	18.4 Singleton Types
	18.5 Distinguishing Fields and Methods
	18.6 Precise Self Types

	19 From DOT to pDOT
	19.1 Syntax
	19.2 pDOT Typing Rules
	19.2.1 From Variables to Paths
	19.2.2 Object Typing
	19.2.3 Path Alias Typing
	19.2.4 Abstracting Over Field Types

	19.3 Reduction Semantics

	20 Examples
	20.1 Class Encodings
	20.2 Lists
	20.3 Mutually Recursive Modules
	20.4 Chaining methods with singleton types

	21 Type Safety
	21.1 Inert Types in pDOT
	21.2 Proof Recipe for pDOT
	21.2.1 Overview of Extended Proof Recipe
	21.2.2 Typing Judgments for pDOT's Proof Recipe
	21.2.3 Proof Recipe Lemmas

	21.3 Typed-paths Environments
	21.4 Canonical Forms in pDOT
	21.4.1 Canonical Forms Proof

	21.5 Value Typing
	21.6 Type Soundness for pDOT

	22 Related Work
	22.1 Early Class-based Scala Formalizations
	22.2 DOT-like Calculi
	22.2.1 Other Related Languages and Calculi
	22.2.2 Decidability

	23 Conclusion
	 Bibliography
	Colophon

