
tt

summary

The precision of data-flow
analyses can be improved in the
presence of correlated calls.

intro

Is your data really secret?
Data-flow analysis (DFA) approximates
properties of programs without running
them. For instance, in a taint analysis, we
find out which variables are secret, e.g. to
discover confidential information leaks.
However, infeasible paths in a program’s
control-flow graph can affect the accuracy
of an analysis.

goal

eliminate infeasible paths
An infeasible path is one that cannot occur during
program execution. In an object-oriented language,
two method calls are correlated if they dispatch to
multiple targets. The goal of this work is to eliminate
the infeasible paths caused by correlated calls.

problem

improving the precision of ifds
We focus on the DFA problems that can be
solved with the IFDS* (Reps et al., 1995)
algorithm. IFDS works by converting a DFA
problem to a graph reachability problem on
an exploded supergraph (see figure →). How-
ever, it can only solve binary decision prob-
lems (e.g. “is a variable secret?”), and is not
powerful enough to keep track of correlated
calls.

method

a transformation from ifds to ide
The IDE** (Reps et al., 1996) algorithm can
solve a larger set of problems than IFDS. IDE en-
codes a DFA problem with a labeled exploded su-
pergraph. The graph edges are labeled with flow
functions. We convert an IFDS problem to an IDE
problem that uses flow functions to keep track
of correlated calls. The flow functions serve to
“remember” the enclosing classes of dispatched
methods.

cs.uwaterloo.ca/~mrapopor
•	 How do IFDS and IDE work?
•	 How are flow functions represented?
•	 How can we implement the correlated-calls analysis?
•	 How do we know the analysis is correct?

result

correlated calls analysis
The correlated calls analysis improves the preci-
sion of IFDS results that contain correlated calls.
Infeasible paths caused by correlated calls are
removed by transforming an IFDS problem into a
special type of IDE problem and solving the latter.

FIND OUT MORE

A.foo {
 return secret();
}

B.foo {
 return “string”;
}

A.bar(String s) {
}

B.bar(String s) {
 print(s);
}

a = condition
 ? new A()
 : new B()

v = a.foo()

a.bar(v)

Only paths of
the same colour
are feasible.

Data flow analysis in the presence of correlated calls
Marianna Rapoport, Ondřej Lhoták, Frank Tip
University of Waterloo

r

main()

a → {A, B}

a = new A():new B() foo() foo()

bar(String s) bar(String s)

class A class B

call a.foo()

return a.foo()
v = a.foo()

call a.bar(v)

return a.bar(v)

a → A

a → A

a → B

a → B

return secret() return “nonsecret”

print(s)

0 a v

s 0 s 0

00

* Inter-procedural Finite Distributive Subset problem ** Inter-procedural Distributive Environment problem

{}

